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products, and partial trace operations.
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Preface

This book is written with an objective of providing a theoretical as well as
mathematical introduction to the concept of teleportation in a self-contained
manner. The required mathematics and physics is described at the
beginning. The description starts from the elementary level and is restricted
to the minimum required for serving the purpose of the book without
making any compromise with rigor. This is done with a view to making the
book accessible to scientists and engineers without having a specialized

knowledge in physics, applied mathematics or computer science.

The book is divided into three parts. The contents of these three parts are

concisely as follows.

In the first part the requisite background materials are given. It is a self-
contained presentation. The mathematics is presented from the preliminary
level and includes everything which is required for the understanding of the
subject matter contained in the book. The requisite part of quantum
mechanics is also described in a self-contained way. It is better that the
reader has an introductory knowledge of quantum mechanics, but this is not
necessary. The topics of quantum physics covered include qubits, multi-
qubit systems, entanglement, quantum evolution, quantum noise, quantum
measurement and a general description of quantum communication system.
The mathematics discussed here includes linear space, Hilbert space, linear

operators in general, Hermitian operators, unitary operators, projection



operators, tensor products and the partial trace operations. There are several

illustrations on the topics included in this part.

In the second part the topics are teleportation protocols for different types of
states using appropriate entangled quantum resources as channels. There are
several versions of teleportation like controlled teleportation, multi-hop
teleportation, probabilistic teleportation etc. whose final aim is to transfer
quantum states with the help of entanglement resources. The above-

mentioned variations are described in this section.

The third part of this book is dedicated to the analysis of teleportation
protocols through noisy channels. Noise is an inalienable phenomena in
every communication system. We consider quantum noise affecting the
entangled communication channel. This noise i1s modeled through Kraus
operators. Four types of noises are considered, namely, Amplitude-
damping, Bit-flip, Phase-flip and Phase-damping noise. In this part we
analyze the effects of these noises on the concerned teleportation protocols
by calculating the fidelity of the process. Fidelity is a measure by which we
understand the deviation of the quantum state actually obtained at the
receiver's end from that which was originally intended for transfer. Further
it 1s important to control the effect of noise as far as possible. We present in
this part weak and reversal measurements and environment assisted

measurements as methods for such control.

The book can be utilized by following the interdependency chart of the

chapters given below.



Chapter 1 Chapter 2

> Chapter 3 <
Chapter 4
Chapter 5
Y
Chapter 6
Y
Chapter 7
Chapter 8
Chapter 9
Chapter 13 Chapter 10
Chapter 11 > Chapter 14
Chapter 12 Chapter 15




Since the literature on teleportation is vast, we discuss some representative
protocols in order to present the basic ideas, quantum mechanical
techniques and the methodologies which are in use in this study. The
bibliography to a certain extent contains the prominent works on this
subject. Particularly, the readers interested in the fundamental ideas of
teleportation will find it in Chapter 8 which is accessible after going

through the prerequisites given in Chapters 1, 3 and 4.

The primary readership of the book is for Theoretical Physicists, Applied
Mathematicians, Computer Scientists, Telecommunication Engineers and
Technologists belonging to all branches of Electrical Technology. Beyond
the primary readership, interested Scientists and Engineers belonging to the
disciplines of Chemistry, Chemical Engineering, Applied Physics, Space
Science, Material Science and Information Technology professionals are
supposed to be benefited through the book. Certain portions of the book can
serve as parts of courses on Quantum technology/ Quantum information

science.

We gratefully acknowledge all the authors whose works have been used in
parts of the book. Also we express our gratitude to all who have helped
directly or indirectly in making our project of writing the book into a

reality.
Dr. Binayak S. Choudhury, Professor

Dr. Soumen Samanta, Assistant Professor
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1 Linear Spaces and
Operators

DOI: 10.1201/9781003561439-1

1.1 INTRODUCTION

In this chapter, the mathematics that are used in the discussion of the
teleportation protocols are provided. Hilbert spaces, which are linear spaces
with appropriate geometries brought about by introducing inner products, form
the mathematical framework of the above-mentioned discussion. These spaces
along with the relevant operators for describing the required part of quantum

physics are presented here. For extensive studies on the topics included in this

1.2 LINEAR SPACE

In this section we begin with the definition of linear space and introduce
Hilbert space consequently. The mathematical framework for the discussion of
our topics in this book is the Hilbert spaces. Moreover, we restrict our
consideration only to finite-dimensional spaces as per our requirement. The
notations used here are different from those which appear in the usual treatise
on linear algebra and functional analysis. This is due to Dirac which is used in

specific areas of quantum mechanics. Especially these notations (ket and bra


https://doi.org/10.1201/9781003561439-1

vectors as they are called) are standard notations in quantum information

theory.

1.2.1 DEFINITIONS AND ILLUSTRATIONS

Let V' be a non-empty set and \+’ be a binary operation on V. Let C be the field
of complex numbers, and let \-’ be an external composition of C with V. Then V'
or more generally (V,C,+,.), is said to be a Linear space over the field C of

complex numbers if the following conditions are satisfied:
1. |o1) t|o2) =|o2) +|o1), V|o1), |o2) € V (Commutativity);

2.lo1) H(lo2) Hlos)) =(lo1) +loa)) +Flos), ¥V |o1),|o2),|03) €V
(Associativity);

3. there exists an element [¢) in V such that |o) 4+ |3) = |o), V |0) € V
(Existence of Identity);

4. for each |o1) € V there exists an element |og) € V' such that

lo1) + |o2) = |9), (Existence of Inverse);
5.(e.f).loy =e.(f.-]o), Ve,f € Cand V |o) € V;
6.e.(|lo1) + |oa)) = (e.|o1)) + (e.|oa)), Ve € C and ¥ |o1),|o2) € V;
7.(e+ f).|lo) = (e.lo)) + (f-]0)), Ve,f € Cand V |o) € V;
8.1.|0) = |o), 1 being the identity element in C.

In mathematics, a linear space or a vector space is defined on an arbitrary field,
which is an algebraic structure defined separately through certain algebraic
operations. We do not require linear spaces except for those over the field of
complex numbers. So we have noted the above definition with respect to the

field of complex numbers only.



Let V be a linear space over the field C of complex numbers. Let
lo1), |02),...,|ok) € V. A linear combination of a set of vectors

{lo1),|o2), ..., |ok)} is any vector
|Z) = e1|o1) + e2lo2) + ... + exlok),
where eq, es, . . ., e are complex numbers.

If S = {|o1),...,|on)}, then the set of all linear combinations of the elements

of S'is denoted by L(.S) and is called the linear span or simply the span of S.

A finite set of vectors {|o1), |02),...,|ok)} is said to be linearly dependent if

there exist scalars eq, es, . .., ex not all zero in C such that
61|O'1> + 62‘0‘2> + ...+ ek|0'k:> =0.

(1.1)

The set 1s said to be linearly independent in V if the equality given in Eq. (1.1)

is satisfied only whene; = ey =--- = e, = 0.

Hilbert spaces can be of infinite dimensions. Particularly, the L-space, the
space of square-integrable functions, has extensive use in the quantum
mechanics of continuous systems. As already noted, these spaces will not be
used in the present context. For that reason, discussions on infinite-dimensional

spaces are omitted.

1.2.2 INNER PRODUCT SPACE AND HILBERT SPACE

The inner product of two vectors |{2) and |E) is given by
n
QUE) = fre + fies -+ flea =Y fle
=1

(1.2)



where ‘Q> Zz 1 fl’0-1> and |‘—‘> - Zz 1 el|o-l>

The inner product (2|Z) is a complex number in general and independent of

their representations.

If two vectors |Q2) and |=Z) are such that (Q|Z) = 0, then [2) and |E) are
orthogonal. If {|Q),|Q2),...,|Q,)} are p vectors such that
(Qr|) = b1, k,1=1,2,...,p, then the set {|21),|Q2),...,|Q2p)} is called

an orthonormal set.

Referring to the completeness relation Y .. |o;)(o;| = I, (described in Section

1.2) we have

ﬁ
m

Z |073) (03| E) = Z eiloi),

1

where e; = (0;|Z). The above formula provides with the determination of the
coefficients for vectors |E) in its expansion with respect to a given basis (see
below Subsection 1.1.3).

The inner product has certain properties which are enumerated below:

1. {Q2) = EI)°

2. (Q(e1|E1) + €2|E2)) = e1(QE1) + e2(QEs)

3.(E|2) > 0 and (E|E) = 0 if and only if |E) = 0, the zero vector of the

linear space.

NOTE: Actually the above properties are used for an axiomatic definition of
Inner Product on a vector space to make it into an inner product space. For our

special purpose, we have taken the definition as in Eq. (1.2).

A complete inner product space is called Hilbert space. The most elementary
but very significant example of a Hilbert space is the space spanned by two

elements {|0), |1) } which we denote by H. Its elements are given as



Z2) = €o|0) + e1]1),
where ¢ and e are complex numbers.
The inner product on this space is given by
(k|l) = 61, k,1=0,1,
that is, explicitly
(0j0) = (1]1) = 1
and
(0]1) = (1]0) = 0.

This particular space Hj is used for the mathematical description of a qubit.

Another example 1s Hy (d is an integer) which describes the d-level quantum

systems known as qudit.

A qudit is a generalization of a qubit. A qudit can be in any quantum state
|0),]1),...|d — 1), and any superposition of these states, similar to a qubit
being in a superposition of |0) and |1). For example, a qudit with d = 3, known

as qutrit, could be in a superposition of three states:
|Z3) = e1]|0) + ea|1) + e3)|2).

We will be concerned only with qubits.

1.2.3 BASIS AND DIMENSION

Let ¥ be a linear space over C and S = {|o1), |02),...,|ok)} be a subset of V.
We say that S is a spanning set of V'if every vector |o) € V can be expressed as

a linear combination of the elements in S. In such cases, we say that S spans V,
that is, V' = L(S5).



Let V' be a linear space. A minimal set of elements in V that spans V' is called a
basis for V. Equivalently, a basis for V' is a set of elements that is (1) linearly
independent and (ii) spans V, that is, V' = L(.S). The number of elements in a
basis for V' is called the dimension of V, denoted by dimV'.

From the above definition, any vector |Z) € V can be written as

n

|2) = e1]|o1) +ez|o9) + -+ enlon) = Z eilo),
1

where {|o1), |o2),...,|o,)} forms a basis for the vector space V.

The above expression is unique insofar as the basis remains the same. With

respect to the given basis mentioned above, we can represent the element |=) as

[ e

€2
a column vector

€n

As per the convention in quantum mechanics, we call |Z) a ‘ket’ vector or
simplify a ket. This i1s known as Dirac's notation and is sometimes called
Dirac's ket vector. There is a corresponding concept of ‘bra’ vector, which is

written as (Z| corresponding to the ket |=).

The representation of (Z| which is actually the complex conjugate of |Z) is

given by a row vector (e, €5, ..., e ) in the same basis.
Abasis {|o1), |02), ..., |os)} is orthonormal if

<O-k‘0-l> =ou, k,1=1,2,...,n

where &y is the Kronecker's delta, which is

1, ifk =1
Ol = .
0, ifk#1



where (o;|o;) stands for the inner product.

In the Hilbert space Hy, we have the basis {|0), |1)} which is a 2-dimensional
Hilbert space.

1 0
As described above, we can describe |0) as (0> and |1) as <1> Then any

|Z2) = e1]|0) + e2|1) will be written as

1 i 0 €1
e e = .
! 0 2 1 €9
This is an alternative representation of Ho.

1.2.4 CHANGE OF BASIS

There can be more than one basis of the same vector space (in fact, an infinite
number of bases is possible). As an instance, for the space Hy described
previously, two bases are noted in the following:

1

V2

The choice of basis is important in quantum mechanics since a basis is related

{10), 1)} and {%um 1)), —= (o) — 1)}
2

to a particular measurement performed on the system. The following is the
mechanism by which we can bring about a change of basis. Since our
consideration will be only orthonormal bases, we describe the corresponding

change only for these types of bases.

It is possible to pass from an orthonormal basis (|;),i=1,2,...,n) to

another (|7;),i = 1,2,...,n) by means of a unitary transformation S:

|'7’zl> = Z Siilv;) (1=1,2,...,n).
J

(1.3)



Then Sk = (vilv;)-

A generic vector

o) = Z ailyi) (ai = (vile)),

(1.4)

can be expressed in the new basis as

@) = D aSihy) (a; = (yjle),

(1.5)

where we have used Eq. (1.2). Thus, the old and new vector components are

linked by the relation
a; = Z Si]‘a;—.
J

(1.6)

As an illustration, if we consider By = {|0),|1)} and By = {|&1), |€2)} with
&1) = %(|O> + 1)), |&2) = %(\0) — |1)), then the matrix T = (¢;;)2x2 for

| L L |
the transformation from B, to B, is given by T' = | \f \/51 |
vz o vz

1.3 OPERATORS ON HILBERT SPACES

Our consideration is limited by our requirement of three kinds of operators on a
linear space, namely self-adjoint operator, unitary operator, and projection
operator. Since quantum mechanics is a linear theory, we only require linear

operators.



1.3.1 LINEAR OPERATORS AND MATRIX REPRESENTATIONS

An operator is a mapping L : H; — Hs which i1s from a linear space H; to

another linear space H.

The operator L is linear if
L(elr) + flm2)) = (eL|m1) + fL|72))

for all |m),|m) € H; and scalars (complex numbers in our consideration) e
and f.

If L is a linear operator, then eL defined as (eL)|r) = e(L|r)) is a linear
operator and if Lq, Lo are two linear operators, then L; + L, defined as

(L1 + Lo)|T) = L1|T) + Lo|7) is also a linear operator.

Considering the above two statements, we conclude that eL; + fLs is a linear

operator whenever L1, Lo are linear operators and e,f are scalars.

Given two bases of H; and Hs of dimensions n and m, respectively, a linear
operator L : H; — H can be represented by an m x n matrix that acts on the
n-tuple corresponding to a vector in Hl;. This representation of a linear operator

by a matrix is specific to the choice of bases.

If L : Hy — H is a linear operator, {|71),...,|m)} and {|m1),..., |mn)} are
bases for H; and H, respectively, then its matrix representation is (L);;, given
by

Lij = (mi|L|7;).

Inverse Operator

Consider a linear operator L on a Hilbert space H, that is, L : H — H. If there

exists an operator M such that

LM = ML =1,



we call M the inverse of L and write M = L™, If we have |r) = L|7), then in
that case |7) = L™ !|x). It is possible to show that the inverse of an operator L
exists if and only if the equation L|7) = 0 (the zero ket |0)) implies that |7) is
the zero vector. Considering the matrix representation of L, it is immediate to

conclude that the inverse of an operator L exists if and only if detL # 0.

1.3.2 OUTER PRODUCTS

Let H be any Hilbert space and |7y), |72) € H. Then the outer product of |11)
and |72) is a linear operator |71) (72| on H defined by its action on an arbitrary
ket |73) in H as

(I (m2l)l7s) = |T1)(m2|73) = ((72|73))|70)-
The identity operator / is defined as I|7) = |), for all |7) € H.

For an orthonormal basis {|m1),|72),...,|m,)} of a (finite-dimensional)
Hilbert space H, we have for all |7) € H,

(I {ma| + o) (ol + . A [ ) (7a )] 7)
= [m)(mi[[7) + [m2) (wa|[T) + ... & |m) (T 7)

n

= (mllm)lm)

From the above, we have the completeness relation that for any orthonormal

basis {|m1), |72),- .., |m,)}, the following relation holds

(1.7)



The above relation is an extremely important result in the discussion of

quantum information theory.

1.3.3 HERMITIAN OPERATORS

Given a linear operator L : H — H on a Hilbert space H, LT on H, the adjoint
or Hermitian conjugate of L is another linear operator L' such that for all
vectors |a), |B) € H,

(| L|B) = (BIL]er)".
(1.8)
We call an operator self-adjoint or Hermitian if LT = L.
For a linear operator L, if there exists a scalar (complex number) such that
Lla) = Aa)

for some |a), then 1 is called the eigenvalue of L and |a) is called eigenket

corresponding to the eigenvalue .
The Hermitian operators have the following properties:
1. They have real eigenvalues.
2. The eigenkets corresponding to different eigenvalues are orthogonal.

3. There exists a complete set of orthogonal eigenkets corresponding to

every Hermitian operator.

It follows from the above that there exist eigenkets |a1),.. ., |a,) for a self-
adjoint operator L on a finite-dimensional Hilbert space H of dimension » such
that

<Oéi|Oéj>:5kl k,l:1,2,..,n



and for any |y) € H,
17) = e1]ar)+. .. +en|an)
for some scalars eq, ..., €e,.

The above is equivalent to the fact that the eigenvalues |a;), ..., |a,) form an

orthonormal basis of H.
For a given basis {|a1), |as), ..., |ay,)}, the matrix corresponding to L is

Lij = <041|L|Oéj>

(1.9)
Then
(LY = (el LT]ey)
= (aj|Lai)
= (il Lla)”
(Lyil7;) = (7i|L';) and this relation can be written as
(Lji)* = (L)
(1.10)
In matrix representation,
LT = (LT,
(1.11)

For a self-adjoint operator, we have
L= (L")

(1.12)



1.3.4 UNITARY OPERATORS

An operator L on a Hilbert space H is said to be unitary if
LL'=L'L =1
(1.13)

From this definition, we have that the adjoint of a unitary operator coincides

with its inverse,
Lt=L71
(1.14)
and that L is unitary. The product LM of two unitary operators is unitary, since
(LM)(LM)' = LMM'L' = I.
(1.15)

Unitary operators preserve the inner product between kets. For any two kets
lo1) and |o2), if |T) = L|oy) and |7) = L|o3), then

(t|m) = (Lo1|Los) = (al\LTL\@) = (o1|02).
(1.16)

With |o1) = |o2), we see that a unitary operator preserves the norm of a ket

vector.

1.3.5 PROJECTION OPERATORS

A projection operator P : H — H, where H is a Hilbert space, is an operator
satisfying the following:

1. P = PT, that is, P is self-adjoint.



2. P2 =P,
3. P 1s continuous.

When H is a finite-dimensional Hilbert space, as in our present consideration,

P is automatically continuous.

Particularly, for a given vector |a), the operator P = |a)(«| is a projection
operator. It is proved in the theory of Hilbert spaces that a projection operator
determines a subspace of a Hilbert space to which all elements of H are
projected by the operator. This result has important consequences in problems

of quantum measurements.

1.4 TENSOR PRODUCT

Tensor product of two or more Hilbert spaces is a method of combining these
Hilbert spaces into a higher dimensional space. It is utilized to describe
composite quantum systems. Tensor products of operators are also described in

this section.

1.41 TENSOR PRODUCT OF HILBERT SPACES

Consider two Hilbert spaces H; and Hy of dimensions m and n, respectively. In
the tensor product H of H; and Hl,, written as H = H; ® H, we can associate
with each pair of vectors |u) € Hy and |v) € Ha a vector belonging to H,
denoted by |u) ® |v) and call it the tensor product of |u) and |v). By definition,
the vectors in H are linear superpositions of the above vectors |u) ® |v) where

the following properties are satisfied:

1. for any ) € Hy, lv) € Hy and e € C,
e(lw) @ [v)) = (elw) @ [v) = |w) © (e|v));

2. for any |p1), |p2) € Hiy and |v) € Ha, (|p1) + [p2)) ® [v) =|p1) @ [v) +
|p2) ® |v);



3. for any |p) € Hy and |11),[v2) € Ha, 1) ® ([v1) + [12)) =|p) ® [11) +
) ® [v2);

In the following, instead of |u) ® |v), we shall often use the notations |u)|v),
|1, v) or [pw).

Let {|p1),|p2)y---y|pum)} and {|v1),|va),...,|vn)} be the bases of the
Hilbert spaces H, and H, respectively. Let
k) = e1lp1) + ealpa) + ... + em|pm) and
V) = filv1) + falve) + ... + falvn), respectively, be two elements of H; and
Hs. Then with respect to the bases mentioned above,|u) and |v) are given by

column vectors

[ e [ fi)

e fa
w)y = : and |v) = :
e fn
We  consider the  set  {|uiv1),|pova), -, |UmVn)},  that s,

{lpivy) i =1,2,...,m,j=1,2,...,n}. Then the linear space H consisting

of vectors

(1]

{l

) = Zeij]uiuj>,i= 1,2,...,m,j=1,2,...,n},
i,J

is the tensor product of H; and Hs where the operations are

E) =alT)+8Q)
= a(z eij],uiuﬁ) + /B(Z fZ]‘:U'lV]»

i,j i,J

= (cei; + Bfij)lmv;)

]

and the inner product is



Q) = Z Z Fpa€ij{Vauplpiv;)

Pg %]
where
@) = Z eijlpivj)
0.
and

Q) = Z fijluiv;).
1,7

The tensor product space is denoted by H = H; ® Hs.

Thus
[ eifr )

e1f2
) =L : J

emfn mnx1

It is computationally convenient to write this as

[ eif ) [ fi)

ez f f2
| pv) L : J, where fL:J.
emf I

As an illustration, let us consider H; = C2, ¢ = 1,2 and specify the bases
(|0)1,|1)1) and (]0)2, |1)2) for them, respectively.

Let |u) = 4/ 510)1 + —z[1)1, and |[v) = —=[0)2 — —=[1)2.



Then
\pv) = \/%%\Oohz + \/%(_%NODIZ + %%\1@12 + %(_%)‘1”12

In this illustration,

) = V2 V3
o [ L L
1 V2 V6
V3\__L -1
T\ .

It is important to note that it is not always possible to express any vector
|Z) € H; ® Hy in the form |¢) = |u) ® |v) for some |u) € H; and |v) € Hs.
As an illustration, we can take H; = C2, Hy = C% and {|0)y,|1);} and
{]0)2, |1)2} as two bases of H; and H, respectively. Then |Z) = |00) + |11) is
such a vector of the above kind. These states are referred to as non-separable
states. As we will see in the next chapter, such vectors describe ‘quantum
entanglement” which 1is the principal resource on which quantum

communication theory stands.

The above concept of tensor product can be extended to any finite number of
linear spaces like H; @ Hy ® ... ® Hy. If ny,ns,...,ng are dimensions of
H,, Ho,...,Hg, respectively, then the dimension of their tensor product is
ni.n2...ng. As an illustration, let H; =C?,i=1,2,3. Then
®; H; =H; ® Hy ® Hy has dimension 2°®=28. In this case
®3 H,;, = (H; @ Hy) ® Hy = H; ® (H, @ Hs), mathematically upto
isomorphism. One (of several alternatives) basis consists of
{]000), |001), |010), |011), |100), |101),|110),|111)}. An example of a vector

that is not separable is

1) = 000) +[111)



which is referred to as GHZ-state in the representation of a 3-qubit system.

1.4.2 TENSOR PRODUCTS OF OPERATORS

Here we investigate the action of operators on tensor products of Hilbert
spaces. Let H; and Hs be two Hilbert spaces with bases {|u1), [t2), - - -, |[tm) }
and {|v1),|va),...,|vn)}, respectively. Then, any element of Hy ® Hs is

expressible as

(1]

B) =) eyli) ® 4)-

ij
If L and M are two operators acting on H; and H,, respectively, then the tensor
product L ® M is defined by the equation

(L®M)(D_ eili) @ 15)) = Y eiLli) ® M|j).
ij ij
It is possible to show that any linear operator O acting on H; ® Hy can be
written as a sum of tensor products of linear operators L; acting on IH; and M ;

acting on Hy:
ij

The matrix representation of the operator L ® M in the basis |K) = |u;v;),
labeled by the single index K =1,2,...,mn, is given by the mn X mn

matrix.

| LllM L 12M s AleMl

IyM LpM -+ Ly,M
LM = ) )

LmlM Lm2M meM



where the terms L;; M denote sub-matrices of size n x n, with L and M being
matrix representations of the operators L and M (L and M are m X m and

n X m matrices, respectively).

1.5 TRACE

For any operator L : H — H, where H is an n-dimensional Hilbert space,

Tr(L)(= Trace of L) = i:(,ui]L[,uﬁ,

where {|u;),7 =1,2,...,n} is an orthonormal basis for H.

The matrix representation of L indicates that the trace is Z?Zl L;;, which 1s the

sum of all diagonal elements of the representation L, ., of L.

1.5.1 INVARIANT OF TRACE

A result of profound influence in quantum mechanics is that for any operator
L : H — H, trace of L is independent of basis. This can be seen through the

following argument.

Let {|p;),i=1,2,...,n} and {|v;),j=1,2,...,n} be two orthonormal

bases for an n-dimensional Hilbert space H.

Then in the basis {|u;)}, the trace of L is

n

Tr(L) = ZW:’\L\#D

i=1

and in basis {|v;) }, the trace of L is



Now,

n

(vj|Llv;)

Tr(L)

<.
Juy

SE|

n

(vjlpa) (il Llvj)

7

.
S
iy
3 |

(| L) (vl ps)

SE|
[y

<

Il

(il L|pi)-

1

Il
[y

In the second step we recall the completeness relation

i i) (pi| = 1.

This indicates that the tr (1) is independent of basis.
We also have the following result:
Tr(LM) =Tr(ML).

Let L and M be two operator from an n-dimensional Hilbert space H to H. Also
let {|u;),i=1,...,n} be an orthonormal basis for n-dimensional Hilbert

space H. Then
n

Tr(L) = Z(MHLU%')-

1=1

By applying the same relation for the basis, {|u;)}, we have



Tr(LM) = (pil LM]p:)
= iZ<#iLﬂj><NjMﬂi>
_ Z E::(MMIMWILIM
= i(uleLuﬁ
— Tr(ML)

It is important to see that although LM = ML in general, their traces have

equal values.

1.5.2 PARTIAL TRACE

Let D be any operator acting on Hj; ® H, where H and Hj; are m and »
dimensional Hilbert spaces, respectively. Then the partial trace of D over Hjy,

denoted Dy, is given by

Dp=TryD =) (I® (j)DUI®I5),

where |7) is any orthonormal basis for the Hilbert space H ;.

From the above compactly written expression, if

D :ZL1a®L2a

where L1, and Lo, are operators on H 4 and H g, respectively, we have,

DL - ZLla Z<]‘L2alj>
a J
= Z LlaTT(L2a).



In particular, if D=L;®Ls, then we have the partial trace
.DL = T’I"(L2).L1.

Similarly, the partial trace of D over H, denoted D);, is given by

Dy =TrpD = Z(<i| ® )D(|i) ® I),

where |i) is any orthonormal basis for the Hilbert space H.

By taking a partial trace over H,;, sometimes called ‘tracing over H,,” we
exclude all the variables related to Hj,. It is an important operation,
particularly in quantum communication protocols performed in noisy
environments. We will be dealing with partial trace operations more in Chapter
5.



2 Classical Bits and
Classical Gates
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2.1 INTRODUCTION

In this chapter, a review of concepts of classical bits and gates. It is required
for a correlation with the corresponding quantum concepts given in later
chapters. References [54, 55, 147, 155] are useful for an in-depth study on
the subjects of the chapter.

2.2 BITS AND BOOLEAN ALGEBRA

A bit or a classical bit as we call it here is the basic unit of classical
information, which is realized in practice by different sorts of binary
devices. We require classical bits in the communication protocols that we
describe in the second part of the book for the purpose of classical
assistance which is inevitably necessary in these protocols. A bit has two
states that can be described by any two different symbols. In particular, they
are often denoted by 0 and 1. The mathematical structure to describe and
manipulate single bits is the Boolean Algebra. There are three basic
operations on these two states which are given in the structure of a Boolean

Algebra. Formally, a Boolean Algebra is an algebraic structure (B, V, A,’)
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where B = {0,1}, V and A are binary operations on B and " is a unitary

operation on B described in Table 2.1.

Table 2.1

Truth tables for OR (a \V b
), AND (a A b), and NOT
(a) operations <

a b aVb
0 0 0
0 1 1
1 0 1
1 1 1
2.1(a)
a b alb
0 0 0
0 1 0
1 0 0
1 1 1
2.1(d)
a a
0 1
1 0
2.1(c)

The general mathematical definition of Boolean Algebra is wider than the

above. What is described above is to serve our purpose here.



2.3 CLASSICAL GATES

Logic gates are operations in which an n-bit input is provided to recover an

m-bit output. This is given symbolically as {0,1}™ — {0,1}™. The above

correspondence is also referred to as a Boolean operation. We describe
some logical gates namely, NOT, AND, OR, and XOR gates, along with

their symbols in the following figures.

1.

NOT gate: A NOT gate inverts the input signal. It is a unary operator,
which means that it operates on a single input. The truth table and

circuit diagram for the NOT gate are shown in Figure 2.1.

. AND gate: An AND gate performs the binary operation ‘A’ between

two bits. The truth table and circuit diagram for the AND gate are

shown in Figure 2.2.

. OR gate: An OR gate performs the binary operation ‘V’ between two

bits. The truth table and circuit representation for the OR gate are

shown in Figure 2.3.

.XOR gate: An XOR gate performs the operation

a®b=a+b(mod 2). The corresponding truth table and circuit
diagram for the 2-input XOR gate are given in Figure 2.4.

n=m=1
a a’
0 1 —
1 0

Figure 2.1 The truth table and symbol for NOT gate. <



b

0 0
1 0
0 0
1 1

= |=10|0O|Q

Figure 2.2 The truth table and symbol for AND gate. <1

= =lOlOol a
- O = O T

Figure 2.3 The truth table and symbol for OR gate. <1

n=2m=1

a b a®b
=a + b(mod 2)
0 0 0
0 1 1
1 0 1
1 1 0

Figure 2.4 The truth table and symbol for 2-input XOR gate. <

2.4 UNIVERSAL GATES



A universal set of gates consists of those gates by which any Boolean
operation {0,1}" — {0, 1}™ can be constructed. An example of such a set
of universal gates is {NAND, NOR}. These two gates are described in

the following two figures.

1. NAND gate: It is a combination of a NOT gate and an AND gate
which performs the operation (a Ab) between two bits. The
corresponding truth table and the circuit diagram for the NAND gate
are given in Figure 2.5.

2. NOR gate: It i1s an combination of NOT gate and OR gate which
performs the operation (a V b)l. The corresponding truth table and

circuit diagram for the NOR gate are given in Figure 2.6.

a b aTlh

= (aAb)
0 0 1 SRR
0 1 1 _—
1 0 1
1 1 0

Figure 2.5 The truth table and symbol for NAND gate. <1

n=2m=1

a b alb=(avVvbhb)

ol oo =

0
1
0
1




Figure 2.6 The truth table and symbol for NOR gate. <1

It may be noted that the set of universal gates is not unique. There may be

several collection of gates acting as set of universal gates.



3 Essentials From Quantum
Physics
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3.1 INTRODUCTION

This chapter contains concepts from quantum physics which are essential for the
understanding of the teleportation protocols. Qubit system is discussed separately along
with the laws of its evolution. Quantum gates and quantum circuits are described. The
description is limited to the technical and conceptual requirements for understanding the

materials in the book. For an extensive appraisal of the topics included in this chapter, [6

—

references.

3.2 POSTULATES OF QUANTUM MECHANICS

In this section we describe the basic principles of quantum mechanics in the form of

postulates. This approach is conventional in the study of quantum mechanics.
Postulate 1:

The state of a quantum system is described by a ket vector which is an element |R) of an
appropriate Hilbert space H. The space H is a mathematical description of the quantum
system. A state of a quantum system is described by a ket |[X) up to a non-zero scalar
multiple, that is, |N) and ¢|X) indicate the same quantum state. The zero ket does not
represent any quantum state. If there are two quantum states |N;) and |Ns), then (
91|R1) + g2|N2)) is also a state for arbitrary choices of g; and gy provided not both are
zero. If a state |R) is such that (R|X) = 1, then we say that |X) is normalized state.
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In particular, |X) and e |R) denote the same state which is that in ket representation the
phase factor e’® is ignored. Physically it means that the phase has no observable

consequences.
Postulate 2:

For every observable physical attribute pertaining to a physical system there exists a
Hermitian operator on the Hilbert space describing that system whose eigenvalues are the

possible observed values for the physical observable.

It follows that the eigenvalues of a Hermitian operator being always real, the observed

values of an attribute of the physical system is also real.

Our consideration is limited to systems described by finite-dimensional Hilbert space in
which case we have a set of distinct eigenvectors {|01), |02),-- ., |on)} of the Hermitian
operator corresponding to the physical observable which forms an orthonormal basis of the

Hilbert space.
Postulate 3:

Measurement in a quantum system described by a Hilbert space H is described by a set of

operators { My, Mo, ..., M} satisfying the completeness relation

M;"M; =1,

~.
Il £
—

(X3}

where 7’ refers to the possible measurement outcome. The operators Ms are called
measurement operators. If the system is given by |X) assumed to be normalized, and the

measurement is performed on |X), then the outcome %” occurs with probability given by
p(i) = (R|M; T M;[R)
in which case the state after the measurement reduces to M;|R).

The above is the most general description of quantum measurement. We will require
mainly projective measurement in our protocols, which is elaborately described in the
subsequent section. Occasionally, we will require Positive Operator Valued Measurement
or POVM operators.



In a POVM measurement the corresponding set of operators {Q1,...,Q,} need not be
idempotent as in the case of projective measurement described subsequently. They are

supposed to satisfy the following assumptions for all i,
1.Q; = Q;f (Hermitian)
2. Q; > 0 (Positive semi-definite)

3.2 Qi=1

If H describes a quantum system, and |2), |2) are two arbitrary ket vectors in H, then

Q1= (I —[E)E])
Q2 = (I - [)(Q)
Qs=1-Q1—Q2

forms a specific example of the above type measurement.

If {|o1),|02),---,|0n)} forms an orthonormal basis of the Hilbert space H describing a
system, then {|o1) (01|, |02){02],-- -, |0n){0n|} describes a set of measurement operators.
A corresponding measurement is also known as measurement in the basis
{le1),]02)s---,|on)}. We will discuss more about it in the context of projective

measurements in Section 3.4.

By a closed quantum system we mean a system which is free from interaction with the

outside environment.
Postulate 4:

The time evolution of a closed quantum system is unitary which means that whenever a
quantum system is specified by a ket |[R(¢;)) at time ¢, and by a ket |X(¢1)) at time ¢; > ¢,
both belonging to the Hilbert space H describing the system, there exists a unitary operator
U(tq,to) on H such that

N(t1)) = U(t1,t0)[R(t0))-

From the above postulate it follows that we can only apply unitary operators to transform a
closed quantum system state to some other state. If it is impossible to construct such an
operator for a proposed transformation, then it is impossible to physically carry out that

transformation. One important implication of the above rule is that the inner product of the



ket vectors are not altered, that is, under the unitary evaluation |[R) — U|R) of the system,

when |7y) evolves to |11') = U|r1) and |m3) evolves to |12') = U|r2). We have
(1) = (n|UUIm) = (m2|m).
The above observation has important consequences in quantum mechanics.

It is immediate from the postulates of quantum mechanics that the measurement of an

observable inherently produces uncertain results having a probability distribution.

The expectation value (which is the average value in the probabilistic situation) of an

observable A when the system is in the normalized state |X) is given by
(4) = (RIAR).

This is demonstrated in the following case where 4 has eigenvalues g; with corresponding

normalized eigenvectors |g;),¢ = 1,2, .., n assumed for simplicity to be all distinct. Then
n
A=Y oiloi){eil.
i=1
Let |[R) = Y7 | ¢;|0;) where .7 | |¢;|* = 1. Therefore

(4) =) oileil®.
i=1

The uncertainty associated with 4 is given by the fact that the measurement of 4 is
associated with the set of measurement operators {|g;){(0;|,7 = 1,...,n} which yields the

value g; with probability.

The uncertainty in the measurement of the observable A4 is defined as

o=

AA = ((A-(4))*)3,
where the expectation value is described above.

The uncertainties pertaining to the measured values of two operators 4 and B are related
by the relation

(R|(AB — BA)[®)|

NA.AB > 5



The above result is the famous Heisenberg's uncertainty principle. We will not explicitly
use it anywhere in this text. But it is to be kept in mind that this principle is present

implicitly in the backdrop of every discussion on quantum mechanics.

3.3 THE QUBIT SYSTEM

A qubit is the simplest quantum system, which is described by a 2-dimensional Hilbert
space. It is the quantum counterpart of the classical bit, which is popularly known as ‘bit’
amongst computer scientists. Qubits are structurally fundamental blocks of quantum
information. The basic difference between a ‘bit” and a ‘qubit’ is that whereas a bit can
assume one of two given values, customarily written as 0 and 1, a qubit can be in a
combination (superposition) of two states producing one of the two states with certain
probabilities only when observed. A ‘bit’ can be described by a ‘Boolean algebra’
{{0, 1}, +, . } with two algebraic operations whereas a ‘qubit’ can be described by a linear
space (of dimension 2) where superposition of the elements is allowable. This is why the
mathematical treatment of ‘bit’ and ‘qubit’ are different. The physical realizations of these
two concepts also differ accordingly. In the case of a ‘bit’, two-level devices like on-off
switches, two-level voltage systems, etc. are sufficient for a physical realization. In the
case of ‘qubit’ physical systems admitting of superposition are required. They include
polarization states of a photon, spin states of a spin-% particle, ground and first excited
states of an atom, etc. From the standpoint of technology, physical realization and

maneuvering of qubits are more complicated than bits.

3.3.1 SINGLE-QUBIT AND ITS REPRESENTATION

As an element of the 2-dimensional Hilbert space Hy or equivalently C2, a qubit is
described by

X) = 91|0) + g2[1)
where {|0), |1)} is an orthonormal basis of Hy, where g1, g2 are complex numbers.

Since the representation of a quantum system is given by a ‘ket’ vector up to a scalar
multiplication (see Section 3.1), there is no loss of generality to assume that

lg1|? + |g2|® = 1, in which case we say that the state |X) is normalized.



Further, from the above consideration, |R) is also independent of an overall (unobservable)

phase factor. This allows us to represent a qubit as

[R) = cos(5)[0) + esin(3)[1)

K
2
when 0 < K, ¢ < 2m.

The above expression of an arbitrary qubit state |[X) allows us to represent it on a sphere

called the Bloch sphere. Figure 3.1 shows the Bloch sphere representation of a single-qubit

pure state.

—2=1)

Figure 3.1 Single qubit state representation using Bloch sphere. <1

It is important to observe that the Bloch sphere should not be confused with the usual 3-

dimensional the sphere. For instance, the orthogonal states |0) and |1) are represented by



points along z — axis, but in opposite directions which is not the case with a 3-

dimensional sphere.

3.3.2 SYSTEMS CONSISTING OF N-QUBITS

Let there be n qubits represented by » number of 2-dimensional Hilbert spaces
Hy, Hy,...,H, having bases {|0)1,[1)1},{[0)2,[1)2},...,{l0)n,|1)n}, respectively.
Then the composite system of these n-qubits is described by H; @ Hy ® - - - ® H,,.

It has an orthonormal basis consisting of 2” elements given by
{l71---Jn) 1 Ji=0,1;i=1,2,...,n}.
The above basis is known as computational basis.

A state of the composite system is given by a linear combination of the 2" states mentioned

above. Thus an arbitrary n— qubit state is given by

R =353 s i,

J1=1ja=1 Jn=1

£y 38 3% i laj, -+ jnl® = 1, then the state is said to be normalized. After

performing a measurement on the basis mentioned above, the state |js, - - - j5,) is obtained
2

with probability [aj, .. ;

Sn

As an illustration, in the case of n = 3, the computational basis of a 3-qubit system is
{|000), |001), |010), |011),|100), |101), |110),|111)}. A state of the composite 3-qubit

system, for instance, described by
g1/000) + g2[101) + g5|110).
For a two-qubit system the most general two-qubit state is given by
[R) = 61/00) + g2[01) + g3/10) + g4[11).
The state is normalized when the condition |g1|? + |g2|% + |g3|? + |g4|? = 1 is satisfied.

If we measure the system in the basis {|00), |01), |10}, |11) }, we obtain the state |00) with
probability |g1|2, |01) with probability |ga|?, |10) with probability |g3|?> and |11) with
probability |g4|?.



Of particular importance are the following 2-qubit states and 3-qubit states known as Bell

states given by

|T1) = —100) + —_|11)
\/ \/2
To) = —=[00) — —11),
V2 V2
1 1
T3) = —=101) + —[10),
V2 f
1
|T4) = —1]01) — —10).
V2 \/2
(3.1)
and 3-qubit states known as Greenberger—Horne—Zeilinger (GHZ)-states given by
|000) + |111) |000) — |111)
|§1> ) |§2> = )
V2 V2
|001) + |110) |001) — |110)
|s3) = : |s4) =
V2 V2
|010) + |101) |010) — |101)
|§5> = ) |§6> = ’
V2 V2
|011) + |100) |011) — |100)
|o7) = : |s8) =
V2 V2
(3.2)

The above-mentioned states (3.1) constitute the Bell basis which is an orthonormal basis

for the 2-qubit system.

3.3.3 EVOLUTION OF A QUBIT SYSTEM

As in the general case of a quantum system, the evolution of an n-qubit system is realized

by a unitary operator on the system. The evolution is given schematically as

| X) U UIX)




Since U ! exists for a unitary operator, the evolution is always reversible. Thus any
operation on an (isolated) n-qubit system is always reversible. We will discuss the other

case where the system is non-isolated (noisy) in the next chapter.

Evolution of 1-qubit

Particularly we have the evolution of 1-qubit by application of three Pauli operators given

by

¥z = 0)(1] + [1)(0],
¥y = —i[0) (1] +¢[1)(0],
9. = 10){0 + [1)(1].

1 0
In the matrix representation with respect to the basis {|0) = <0> 1) = (1) }, we have

the usual form of Pauli matrices

z=0.-(; °).
0 -1

These are referred to as Pauli gates or X-gate, Y-gate and Z-gate, respectively. Throughout

the book we extensively use the above notations of Pauli operators and Pauli matrices.

The identity operator
10
I=10)(0 H(1| =
oo+ war= (5 1)
is trivially a unitary operator.
Also we have the Hadamard gate given by
HI|0) = (|0>+!1>)

H[1) = (|0> 1)),

%\ %\



which has the matrix representation in the computational basis as

=50 5)

no- (] %)

Considering the representation of the 1-qubit state in Section 3.2.1, we have

R.(5) cos% B cos%y
? ewsin% B ei(d’““‘s)sin% ‘

It indicates the change in the relative phase.

The phase-shift gate is defined as

The above are some examples of operators which describe 1-qubit evolution.
Evolution of qubit systems:

We consider a system of n-qubits q1, g2, . . . , g, individually represented by Hilbert spaces
Hy,Hs,...,H,. Then the composite system is given by H; ® Hs ® --- ® H,. The
evolution of the composite system is described by 8 — UN where U is a unitary operator.
In particular, if Uy, Us, . . ., U, are unitary evolution operators for the qubits q1, g2, - . ., qn,

respectively, then the evolution of the composite system is given by
N— (U10U;® -+ U,)N.

As an illustration, we consider the Bell-state |Y3),,q, = 110) + |01))4,q,- When the

1
- (
qubit g, is operated with 3, and the qubit ¢, is operated with §,, then the Bell-state | Y3) 4,4,

evolves into

1 1

E(|1o>+|o1>)) _E(ﬂmm®19z|0>+z9x|0>®19z|1>)
1

a

~ L ooy -

= 5 100 = [11)).

(9. ®9:)(

(10) ®0) + 1) ® (—)[1))



3.4 THE RELATION BETWEEN BITS AND QUBITS

Both bits and qubits when measured yield one of the two possible states usually denoted
by 0 and 1 for bits and |0) and |1) for the case of qubits. The difference is that a bit is in a
definite state O or 1 at any time (and hence prior to the measurement) and a measurement
on it can be performed without affecting the state of the qubit, whereas a measurement on
a qubit (generally) affects its state, yielding |0) or |1) with some probability. Prior to the
measurement a qubit is in a superposed state of |0) and |1). The mathematics of
superposition is required to describe a qubit which is supplied by a Hilbert space. From a
mathematical point of view this is fundamental in understanding the difference between a
bit and a qubit. Further, the dynamics of a qubit is subject to the laws of quantum
mechanics. As a consequence, the changes (except by measurement) of qubit systems are
unitary in general which are reversible. Along with qubits, classical bits are also necessary

participants in teleportation processes.

3.5 PROJECTIVE MEASUREMENT

A measurement is a Projective measurement of M)s are projection operator with
M;M; =0if¢ # j.

As an illustration, we consider a spin-% system described by a 2-dimensional Hilbert
space Hly having as basis elements |1) and ||), physically describing spin up and spin
down states with respect to a fixed direction in space. Let us consider a projection
measurement { My, My} where M; = | 1)(1| and My = | ])(}| is performed on the state
IN) = g1| 1) + g2| J). Then we obtain spin up as our measurement result with probability
R DA DD DIR) = |g1]?. In this case the state |R) of the system reduces to g1| 1)

which, when normalized, is the same as | 9911‘2 | 1).

By a similar consideration we obtain spin down as the measurement result with probability

|g2|? with the state |N) being reduced to |gg22|2 [4)-

We sometimes talk of measuring in a basis of the Hilbert space corresponding to the
quantum system. This practice is very often adopted in this book. The following is the

explanation of the above.

If {|o1),]02),-.-,|0n)} is an orthonormal basis of H, then {M;, M,,...,M,} with

M; = |p;i){p;| constitutes a set of Projective measurement operators. Measuring with them



is referred to as measuring in the basis {|01),|02),-- -, |on) }-

A Hermitian operator 4 has associated with it an orthonormal basis {|g1),|02),---,|0n)}
consisting of its distinct eigenvectors. Conversely, given an orthonormal basis, we can
always associated 4 Hermitian operator, that is to say, a physical observable. Thus to

measure an observable is the same as measuring in a basis.

3.6 QUANTUM GATES AND CIRCUITS

Quantum gates are unitary operators which act on the quantum states. One important
difference between a quantum and a classical gate is that the action of most classical gates
is irreversible, but for quantum gates, it is reversible. Quantum gates are represented by
unitary operators on Hilbert spaces. Quantum gates are constituting elements of quantum
circuits. They are sometimes (but not always) counterparts of Boolean gates in the
Boolean circuit theory. Further discussion on their extremely important utility will drift us
away from our objective in this book. We restrict ourselves to the extent to which they are
used in teleportation protocols we discuss in the present context. Nevertheless they are
relevant in the fabrication of the quantum entanglements we use as quantum channels in
the protocols. We will mention in the passing how entanglement can be generated by the

application of quantum circuits.

By their very definitions the quantum gates are reversible quantum operations. This

reversibility is crucial in quantum information theory.

3.6.1 UNITARY GATES

In the matrix representation, a unitary gate U acting on a n-qubit system is a 2" x 2"
unitary matrix. Unitary matrices preserve the norm of the quantum state which is crucial
for maintaining the probabilistic interpretation of quantum mechanics. When a unitary gate

U acts on an arbitrary state |X) of a qubit, the transformed quantum state |R’) is given by
) = U|R).
Further, the existence of U ensures the existence of U ~1, that is,
N) = U N).

It has the following visual representation:



[R)— U U = [R)

A general unitary gate U acting on a single qubit is capable of being represented as a 2 x 2

complex unitary matrix. Given the constraint UTU = I, such a matrix can always be

U= ( 91* 93),
—go U1

where the condition |g1|? + |g2|? = 1 is satisfied.

written as:

The following are some types of quantum gates:

1. Pauli Gates: There are three Pauli gates which are Pauli-X gate, Pauli-Y gate, and
Pauli-Z gate. These are single-qubit gates and perform rotations around the Bloch
sphere's X, Y, and Z axes, respectively. The Pauli gates and their gate notations are the

following:

10

x= (3 o) F-
(1) -

7= ((1) —01> —Z

Any 2 x 2 unitary matrix can be expressed as a linear combination of Pauli gates and
the identity gate. Also, any rotation on the Bloch sphere can be shown as composed

of Pauli matrices.

2. Hadamard Gate: It is a single-qubit gate transforming the states |0) and |1) to
%(|0) +11)) and %(|0) —|1)), respectively. Its action creates an equal

superposition of |0) and |1). The matrix representation and the gate notation are

given respectively as

-5 )



. Phase Gates: It creates a phase shift of qubits. An instance of a phase gate is the S
gate which adds a phase of 7 to the quantum state |1) while keeping the state |0)

unchanged. The matrix representation and notation of the S gate are

o—(37) 8-
. Controlled gates: Controlled gates are two-qubit gates that act with a control qubit.
A qubit is called target qubit whose state depends on the state of another qubit known
as the control qubit.

One example of Controlled gates is the Controlled-NOT(CNOT) gate, which flips the
state of the target qubit if the control qubit is in |1) state, and keeps it unchanged

otherwise. Matrix representation and notation of CNOT gate are given as

/1 0 0 0

cnvor= |0 1 OO 1—
L/

00 0 1
\0 0 1 0/

Another example of a controlled gate is the controlled-Z gate, or (CZ) gate, which is

/1 0\
0 0
0

0
\0 0 0 -1/ —1£

5. SWAP Gate: The SWAP gate is a two-qubit gate whose action is to exchange the

the following

CZ

S = O

0
0
1

states of two qubits. Its matrix representation and notation are the following



SWAP =

o O -

0 S ——.
0] —%—
1

~
-

3.6.2 QUANTUM CIRCUIT

A quantum circuit is a quantum analogue of a classical circuit. It represents a process
performed on qubits. A circuit diagram represents operations sequentially performed on
qubits. It consists of qubits, quantum gates, measurements, and wires for connecting qubits

to other components.

Typically, an illustrative quantum circuit for entangled state
2%/5(]0001@ +|00100) + |11010) + [11100) + |00011) — |00101) — |11011) + |11101))

1s given in Figure 3.2.

0) H ’ A

o
~
N
N
N

|0) X

|0) H ° ® o

Figure 3.2 Circuit generation of entangled state. <J

JanY
N

In the Figure 3.2,



— H— stands for Hadamard gate

— X — stands for Pauli X-gate

stands for controlled-NOT gate

stands for controlled-Z gate

b
7z
.

—,—A+— stands for measurement operator

Quantum circuits for several purposes are constructed in the following chapters.
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41 INTRODUCTION

This chapter deals with the concept of quantum entanglement which is the most
precious resource in quantum communication science. Some topics on
entanglement including construction of circuits for entanglement generation are
presented. The materials presented here are limited by their requirements in the
protocols presented here. Books and review articles [36, 37, 106, 113, 134, 139,

140] contain different aspects of quantum entanglement.

4.2 QUANTUM CORRELATION

Quantum correlations are fundamental concepts for the understanding of the
phenomena of quantum entanglement. Two quantum systems can have correlation
even if they are separated by arbitrarily large distances. This is completely
quantum in nature having no corresponding classical counterpart. The concept of
such correlation first appeared in the famous EPR paper by Einstein, Podolsky, and
Rosen published in 1935, albeit in a different context. It is nonlocal in nature. It is
the central theme in use in the domain of quantum technology. Particularly,
entanglement forms the main quantum resource in quantum communication

schemes like the teleportation protocol.

Entanglement is inseparability between two quantum systems. If two quantum

systems 4 and B are represented by Hilbert spaces H 4 and H g, then the state of
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the composite system 4B is given by |2) € Hy ® Hp. If it is impossible to

express
2) =[E1)a®[E2)5

for |[E1) 4 € Hi4 and |Z3) p € Hp, then the system is entangled and the state |2) is

called an entangled state.

As an illustration, we consider two qubits 4 and B such that the composite 2-qubit

system is given by one of the Bell states described in Section 3.2.2,

1
T1)ap = E(‘O>A|0>B +11) 4l1) 5)-
It is an entangled state of two qubits which can be seen in the following:
If possible, let |Y1)ap = |Y14) ® |T15) where |Y14) = g1|/0)4 + g2]/1)4 and
IT18) = 93|0)5 + 94/1) 5.

Then [Y1) 45 = 9193|0) 4|0) B + 9194]0) 4|1) B + g293]1) 4|0) B + g2984|1) 4|1) B.

Comparing the two expressions of |Y1)4p, we have gig3 = %, g194 =0,
g203 = 0 and gogg = % The above four equations are inconsistent, implying

thereby that the state | Y1) 45 is an entangled state. It can be similarly proved that

all four Bell states are entangled.

4.3 MULTI-QUBIT ENTANGLED STATES

A multipartite system is a combination of more than two individual systems. If
these are p(> 2) systems described through Hilbert spaces Hjy, ..., H,, then the
composite of these systems is a multipartite systems which is described by
H=H;®...®H,. A state of the system |Z) is a member of A. If it is impossible
to write (mathematically upto isomorphism)

2) = [E1) ® =)



where |=;) belongs to the tensor product of n; number of Hilbert spaces collected
from Hy,...,H,, being all distinct, ¢ = 1,2 and n; + ns = n, then we have a
multipartite entangled state |=). It may be noted that some constituent states of |=)

may have entanglement amongst themselves. As an illustration, a 3-qubit state
0)1 ®[0)2 ® [1)3+[0)1 ® [1)2 ® [0)3 + [1)1 ® |0)2 @ |0)3
customarily written as |[001) + |010) + |100), is an entangled state.
On the contrary, the state of 3-qubits
2) =1001®0)2®[1)3+[0)1 ®|1)2 ®|0)3 4+ |1)1 ® [0)2 ® [0)3

|Z1) ® |E9)  where

is not entangled since we can write |Z)
[Z1) = 10)1 ® |1)2 + [1)1 ® [0)2 and |E2) = [0)3.

It may be noted that the part |=;) is an entangled state which is an unnormalized
Bell state.

44 MAXIMALLY ENTANGLED STATES

There are several measures of entanglement on the basis of which we can say
whether a state is more entangled than the other. In particular, we can speak of a
maximally entangled state. In this section, we only discuss the issue of maximal
entanglement in a bipartite system based on the Schmidt decomposition. For the
concept of maximal entanglement in a multipartite system, we require density

matrices. This part will be taken up in Chapter 5.

If there are two quantum systems 1 and 2 described mathematically by Hilbert
spaces H; and Hy of dimensions d; and d,, respectively, then for a state
|E) € H; ® Hy it is possible to find bases {|u1), ..., |1q,)} and {|v1),...,|va,)}
of H; and Hy, respectively such that



where d = min{di, d>}.

The state 1s entangled only if more than one of ¢; s are non-zero.

The state |E) is maximally entangled if ¢; =...=cq= & where |E) is

normalized.

It may be immediately seen that the Bell states are maximally entangled in view of

the above consideration.

4.5 CIRCUITS FOR ENTANGLEMENT GENERATION

In this section, we present some quantum circuits for generating entangled states,
as shown in Figures 4.1 to 4.4. The constructions of circuits are self-explanatory.
We explain the generation through the circuits in Figure 4.4 as a representative

casc.

01 |0) —H
Q2 |0> N

Figure 4.1 Circuit diagram of Bell-state % (l00) + [11)). &4

O 10) —H
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S

Figure 4.2 Circuit diagram of GHZ state %(|000) +[111)).
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Figure 4.3 Circuit generation of entangled state

—_(]0101010) + [0101101) + [0110011) + [0110100) + [1001011) + [1001100) + [1010010) + [1010101
2v/2

H l *
b H ®

Q1 10

0y
0
Q4 |0
(5 |0)

o O
e e G S G Gt

4R
G/

/R
%

4R
G



Figure 4.4 Quantum Circuit generation for the entangled state |E),0,0,0,0, given in Eq. (4.1). &

Now we describe step-by-step circuit generation for an entangled five-qubit cluster

state given in Figure 4.4 in detail given by
1
1E)0,0,0,0,0; = 5(\00000) +|01011) + [10100) — |11111)).

4.1)

Step 0: A five-qubit state is prepared from a five (|0)) zero initial state which is
given by

1E0):0:0:0:0; = [0), ® |0)g, ®[0)q, ®[0)g, ® [0)g;-

Step 1: Now, first a Hadamard gate is applied on qubit Q; and then a controlled-
NOT gate is applied with qubit O, as control qubit and qubit O, as target qubit.

Then the initial state | E) is transformed into the state

1
Ey) = — (100000} + 11000)) .
‘ 1> \/2 ‘ > ‘ > Q1Q2Q3Q4Q5
Step 2: Again, a Hadamard gate is applied to the qubit O, and then the state |E)

evolves into the state

1
E)) = — ( 00000) 4 |01000) + {10000) — {11000 ) .
B) = 5 (00000) +01000) + [10000) — [11000))
Step 3: Next, a controlled-NOT gate is applied with qubit O, as the control qubit
and qubit Q5 as the target qubit. Then the state |E2) becomes

1
By) = = (\00000> +101000) + [10100) — \11100>) .
2 Q1Q2Q3Q4Q5
Step 4: Lastly, two controlled-NOT gates are applied with qubit O, as the control
qubit for each of the qubits O, and s, respectively, as target qubits. Then the state

|E3) is transferred to



1
By) = = (\00000> +101011) + |10100) — \11111>> ,
2 Q1Q:Q5Q4Q5

which is the same as | E) 9,0,0,0,0; given in Eq. (4.1).
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5.1 INTRODUCTION

The chapter presents some aspects of the density matrix theory. The topics
include the necessity of density matrix formalism and reduced density matrices

several aspects of density matrix theory.

5.2 NECESSITY OF DENSITY OPERATOR

Density operator is a mathematical instrument that is a generalization of the
idea of a ket vector. It combines classical information with quantum
information and is suitable for the description of many physical systems for

several practical purposes.

The idea originates from the observation that an element |=) of a Hilbert space
H representing a quantum system can be associated in a one-to-one
correspondence with a Hermitian operator |=)(Z| acting on H. A ket |E)
describes the state of a quantum system which is a member of the Hilbert space
H,, of dimension n describing the system. This can be described alternatively

by a linear operator |=) (=] on the same Hilbert space H,, defined by

(IZ)(ENR) = (ER)[E)


https://doi.org/10.1201/9781003561439-5

(5.1)

Mathematically, the correspondence |Z)(E| <+ |Z) is an isomorphism for the
case of finite-dimensional Hilbert spaces. The operator w = |E)(E]| is called
the density operator for the quantum state. But there can be other operators on
H which also describe quantum systems. As an illustration, we consider the
situation where there are quantum states |=,) with probabilities p,, for |Z,) to
be obtained in a random choice. The mixed quantum state is described by the
density operator w = Y Pa|Za)(Eq|. There is no assumed correlation

between two different quantum states |=,) and |Zg).

The specialty of the description is that it entails both classical and quantum
uncertainties. Such physical situations are common in practice and
experiments. This is the reason why density operators are important in quantum

mechanics.

It is important to note that a density matrix may correspond to and describe

more than one physical situation.

As an illustration, considering the 2-dimensional Hilbert space describing a
qubit, a 50-50 mixture of |0) and |1) and a 50-50 mix up of the states
1Z) = %UO) + 1)) and |Z,) = %(\m —|1)) are both described by the
same density matrix. This can be verified as follows. In the former case the

describing density matrix is

1 1
S10)0] + 111,

while in the latter case the density matrix is



1
2

1 1 1 1 1
=~ (Eum +11) = (0]+ (1 + (10} = 1)) =0 - <1|))

1 1
= 10)(0] + 5 1)1,

—_\ 1
1Z21)(E1| + §|~=2><=2|

It 1s impossible to describe the underlying real situation merely by looking as

the density matrix.

5.3 PROPERTIES OF DENSITY OPERATOR OR MATRIX

In general, an operator @ describing a quantum system is a density operator if it

satisfies the conditions:

(i) w' = w (Hermitian),
(i) @ is positive semi-definite,
(iii) tr(w) = 1.

The matrix representation of the density operator is called the density matrix

and 1s given by the same symbol .

Being a Hermitian operator, by virtue of the spectral decomposition theorem, it
is possible to find a basis {|r;) : 4 =1,...,n} (say) of the Hilbert space H in

which the density matrix is diagonal. In that case we can write
n
@ =Y Ajlm) (7
=1

(5.2)
Here, A; > 0 by the positive semi-definiteness of @.

Then tr(w) = Y, Ajand tr(w?) = >0, A%,



It then follows that tr(w?) < tr(w) = 1 and that the equality follows only

when A, = 1 for some k and A; = 0 for all j # k in which case we have
@ = |7k) (Tkl,

that is, in this case, @ represents a pure state.:: noindent:: Conversely, it is

immediate that for a pure state we have tr(w?) = 1.

From the above, it follows that @ describes a pure state if and only if
tr(w) = tr(w?).

If 4 is an observable, then its expectation value when the quantum system is in

the pure state |=) is

(5.3)

Now in a situation where there are many quantum states, say,
1Z1), |E2),...,|Zk) mixed up (classically) in proportions pi,ps,..., Pk, that
is, there are totally m states with m; number of |Z) states, m, number of |=3)
states, ..., m; number of |Zj) states, with mp; = m;,i = 1,2,... k, the value
of (A) depends on two factors. One is the drawing of the state |=;) from the
above collection (ensemble), while the other is the finding of the value
according to (5.3) with |Z) = |E;).

In the first place the probability is classical, while in the latter consideration

this is purely quantum. We can combine them into one formula by writing



where

(5.4)

is the density operator describing the above situation.

5.4 DENSITY MATRIX OF COMPOSITE SYSTEMS

Let Hy and Hp be Hilbert spaces associated with two systems 4 and B,
respectively, and @ is the density matrix describing the state of the composite
system A and B. Occasionally, it is possible to write the density matrix of the
composite system @ as w = w4 ® wp for two density matrices w, and @y
pertaining to the two systems 4 and B, respectively. If this is not the case, that
is, if w # w4 ® wp for some choices of density matrices w, and wp, then we

have an entanglement existing between the two systems.

As an illustration, we take the density matrix of the Bell state
T2) = L(/00) — [11)) 5.

The density matrix of |Y2) is ©o = | T3) (Y 5| which is



41

e

It cannot be written as a tensor product of two density matrices @, and @p,

O O R
o O o O
o O O O

1
2

which confirms the entangled character of | T5).

5.5 REDUCED DENSITY MATRIX

Let @ be the density matrix describing the composite quantum system as in
Section 5.2. Then the reduced density matrices @, and wp, for the respective
systems 4 and B, are given by w4 = trpw and wp = trpw where tr4 and
trp are the partial trace operations on the state @ of the composite system as

described in Section 1.5.

If Hy admits of a basis {|ui),i=1,2,...,m} and Hp admits of a basis,
{lvi),i =1,2,...,n} then the composite system of 4 and B corresponds to the
Hilbert space Hy ® Hp having dimension mn with a basis consisting of the
element |p;v;)(= |pi) ®|vj) i=1,2,...,m; j=1,2,...,n. The density
matrix @ is described by its element w;; where 1 <4,/ <m and
1<k, j<n.

Then @, and @y are given by

n
(wa)a = g Wipip 41 =1,2,...,m
p=1

and

m
(wB)il = quk,qj k,j = 1,2, ceey .
qg=1



The reduced density matrix describes a subsystem by eliminating the rest part

from the total subsystem.

5.6 QUANTUM ENTROPY

The von Neuman entropy of a mixed state @ is given by the expression
E(w) = —Tr(wlogw).
If w is a pure states, then E(w) = 0.

If A is the subsystem of the system described by @ and @, is the reduced
density matrix of the system A, the quantity —T'r(w 4 logwo 4) is independent
of the choice of the subsystem A.

We call the quantity —T'r(wo 4 logwo 4) is the entropy entanglement measure of
w. A state given by @ is a maximally entangled state if the above entropy
entanglement measure is maximum. It may be observed that from the above

viewpoint, the Bell-states are maximally entangled.

It should be mentioned that there are other entanglement measures like the
widely used ‘negativity’, etc., which are different from the above one. The
concept of the ‘amount of entanglement’ may be different for different choices

of these measures.
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6.1 INTRODUCTION

This chapter is on quantum noise. The origin of noise as a part of
interaction with the environment is discussed. The Kraus operator
formulation of noise along with various special types of noises are
presented. References [14, 32, 44, 77, 109, 113, 115, 131] are helpful to

understand different aspects of quantum noise.

6.2 ORIGIN OF QUANTUM NOISE

Noise is an unavoidable phenomena in any communication system
regardless of whether it is classical or quantum in nature. The effect of
noise we consider originates through the interaction of the quantum
resource with the environment. It is a quantum decoherence phenomena
[143, 144] by which the quantum resource shared by the different parties
becomes less entangled and thereby the quality of output decreases at the
receiver's end. The output becomes different from the input which is the
desired output. The noise affects the resource when after its generation the
qubits constituting the entangled resource are distributed to different parties.
In the process of distribution, the qubits have to pass through the noisy

environment and thereby become affected with noise.
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6.3 KRAUS OPERATORS

Quantum noise we consider here is described by Kraus operators. Their
origin lies in the quantum decoherence phenomena. An elaborate
description of this origin is beyond the scope of the book. In the following
we give a short deduction of this description of quantum noise under

restricted assumptions.

Let the Hamiltonian function associated with the system and environment
be Hg and Hj, respectively. Then the Hamiltonian for the system-
Environment combination is given by Hr = Hg ® Hp. Let the space Hy
have a basis {|e1),...,|e,)} and the initial states of the system and the
environment be given by w(0) and |e)(e|, respectively, where we have
assumed that the system is in a mixed state and the environment is in a pure

state. We write
wr(0) = w(0) ® |e)(el.

The System-Environment composition is assumed to form a closed system
due to which it evolves unitarily. Thus
wr(t) = Ulwr(0)U = Ulw(0) ® |e)(e|U where U is the unitary operator
on Hy. For finding the evolution of the system we take a partial trace over

E. Then the evolution of the system is given by
w(t) =trp(wr(t))

(eulUTw(0) ® [e) (e|U]ey)



where M, = (e|U|e,) operates on the Hilbert space Hg and are referred to

as Kraus operators. An important property of the Kraus operators is that
they satisfy the condition 7" | M ,IM . =1

It is important to note that the above derivation is obtained under certain

restrictions. Also, it is noteworthy that the number of Kraus operators

depends on the dimension of the Hilbert space describing the environment.

6.4 DIFFERENT TYPES OF NOISES

There are several types of noises that have different effects on the quantum

system under consideration. They require different choices of Kraus

operators. We note in the following some of these noises.

l.

Amplitude-damping Noise: The Kraus operators of amplitude

damping noise are expressed as:

%o=lo b o v

where p is the noise intensity parameter of amplitude damping noise.

. Bit-flip Noise: The Kraus operators of bit-flip noise are expressed as:

RSN

0 vi—g N

where g is the noise intensity parameter of bit-flip noise.

. Phase-flip Noise: The Kraus operators of phase-flip noise are

expressed as:



Kozlm 0 ]Klz{ﬁ 0]
0 Vi-r| —\T

where r is the noise intensity parameter of phase-flip noise.

4. Phase-damping Noise: The Kraus operators of phase-damping noise

arc expressed as:

S R e 3 !

where s is the noise intensity of phase-damping noise.

5. Depolarizing noise: Depolarizing noise is described by the following

Kraus operators:

10 [1 [0 1
—+/1— K =4/ —
K=Vl l[o 1]’ ! 3 [1 0]’

I [0 —i [l 0
Ky =] = Ky =4/ —
2 3[i 0]’3 3[0—1]

where [ 1s the depolarizing probability.

In all the above cases the number of Kraus operators is determined by the
dimension of the Hilbert space which describes the environment. They have
different physical effects on the qubit. We do not enter into the details of
these physical effects.
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7.1 INTRODUCTION

In this chapter, the quantum communication system is described. The
concept of fidelity quantifying the faithfulness of quantum state transfer is
discussed. For detailed exposure on this topic, [71, 86, 113] is helpful

references.

7.2 GENERAL DESCRIPTION

A general communication system can be described by the following

diagram
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Information source

!

Encoding

!

Transmission

!

Decoding

!

Destination




The system can be either classical or quantum or a combination of both.
Quantum information is encoded in qubit systems which is the counterpart
of classical information being encoded in bits. Teleportation is a process by
which qubit systems are transmitted using quantum resources which are
entangled states shared between the different parties participating in the
process. In every teleportation protocol, the assistance of a classical
information channel is unavoidable. Further, at the receiver's end decoding
takes place which, in the case of quantum communications, is the decoding
of information from qubit systems obtained after transmission. In this book
we will be concerned with only the ‘Transmission’ part of the

communication system.

7.3 QUANTUM CHANNEL

A quantum channel is an arrangement, mathematically some operations,
that produces a density matrix @ corresponding to an input density matrix

w.

w — |Quantum Channel | — @'

In the teleportation protocols, entangled states act as resources in these

quantum channels.

A formal mathematical description of a quantum channel is done by a
superoperator which is trace-preserving and completely positive. We do not

enter into such mathematical aspects of the theory.

7.4 FIDELITY

The degree of similarity between two quantum systems is mathematically

quantified through the concept of fidelity. It is useful as well as necessary in



many practical situations. For instance, the preparation of a quantum state is
generally limited by imperfections. It might be necessary to know in
quantitative terms the amount of imperfection, that is, how much the
prepared state has deviated from the state intended for preparation. As
another example, it is known that exact cloning of a quantum state is
impossible, but it is possible to create approximately cloned copies of a
quantum state. In that situation, it may be necessary to determine the
similarity of the cloned copy with the original one for the purpose of
determining the quality of cloning and for possible measures toward
optimizing the quality of the cloning. Formally, the fidelity between two

mixed states @, and @, 1s given by

ZF (w1, @) = (tr\/\/Elwm/51> 2,

(7.1)

In particular, if one of the states is a pure state, we have the following

expression:

(7.2)

As an illustration, if both the states are pure states, that is, oy = |2) (2| and

wy = |=2)(E|, then we have
Z(1)(Ql, [E)(E]) = (QIE)".
(7.3)

When a quantum communication process is perfect, that is, the input is

equal to the output, the fidelity takes unit value which can be seen from the



above expressions of fidelity.

Our use of the expression of Fidelity will be mainly based on Eq. (7.2). For
our purpose, we will require the determination of fidelity when teleportation
is imperfect which is when the process is executed in a noisy environment.
The input state then differs from the output state due to the effect of noise
which perturbs the otherwise perfect teleportation process. It is interesting
to note the effects of variation of the noise parameter as well as other
parameters in the protocol. If @, is the density operator of the input state,
the density matrix of the output state is @,, 1, . . . , iy, are parameters in the
protocol including noise parameters, then the fidelity F(co1, w3, 1, - - - 5 fin)
varies with the parameters ug, ..., u,. If the noise parameters in the set
{p1,-..,n} are made vanishingly small, then physical considerations
show that the fidelity # will tend to the unit value. The above is a universal

feature of fidelity analysis.
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8.1 INTRODUCTION

In this chapter, the single qubit teleportation process is presented. The
process 1s described elaborately. It forms the backbone of understanding of

the rest of the protocols presented in the following chapters.

8.2 THE BASIC PROGRAM OF TELEPORTATION
PROTOCOL

In this chapter, an overview of the basic proposal of teleportation process is
provided. It was originally designed by C. H. Bennett and his coauthors in
1993 where an unknown one-qubit state is transferred from one party,
namely Alice, to another party, namely Bob, by using Bell state as quantum
resource and performing Bell state measurement (BSM) [7]. Additionally,
description of the same protocol using measurement on computational basis
1s also included in this chapter. These names Alice and Bob are customary in
information theory and are adopted from there in quantum communication
research. The achievement of teleportation is through quantum mechanical

operations although supported with a classical communication channel. This
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support of classical communication precludes the possibility of super-
luminal signaling, that is, the possibility of sending signals instantaneously
or at least at a speed exceeding that of light. Also, such a necessary support
of classical communication specifies that classical causality is not violated
by the process of teleportation and, therefore, there is no violation of local
realism. Incidentally, classical communication channels as assisting channels
are indispensable in all types of teleportation which are described in the
subsequent chapters. Therefore the above considerations are also applicable
to all the following chapters. It is important to emphasize that teleportation is
fundamentally a process of quantum state transfer with no physical object

being transported.

The teleportation process has several versions and is applicable to the tasks
of transferring various types of states. The basic methodology of
teleportation is also applicable to other areas of quantum mechanics where
remote action is warranted. They include protocols performing telecloning
[29, 49, 51, 68, 108, 116, 181], remote implementation of operators [3, 66,

several protocols are described whose understanding requires the basic ideas

and methodologies presented in this chapter.

Since teleportation protocols are of various kinds, the types discussed here
are not exhaustive. There are several other protocols which have not been
addressed in this book although they are no less important. They include, for
instance, teleportation by quantum walk [18, 40, 84, 148, 151, 167], mentor

initiated teleportation [27], quantum conference by teleportation [26], multi-
directional teleportation [72, 161, 193], short-distance teleportation [2, 3

—_—) =)

103, 157, 177], etc. Particularly teleportation of continuous variables [11, 13,

42,47, 111, 127, 188] has been kept out of our discussion. The experimental

verification of teleportation has been reported in several works [64, 100,



132]. We have not discussed the experimental aspects since it is outside the

scope of the book.

8.3 TELEPORTATION OF ARBITRARY SINGLE-QUBIT
STATE

In this section a scheme for teleporting an unknown single-qubit quantum
state from the sender Alice to the receiver Bob is described. Bell state
measurement (BSM) is used in the protocol. The protocol was designed by

Bennett et al. [7] through which the concept of teleportation was introduced.

Alice possesses a qubit without knowing any information about it. Let the

single qubit in Alice's possession be given by

R)a = (91/0) + g2[1)),

(8.1)

with the parameters g1, g satisfy the normalization condition, that is,
2 2
lg1]" + [g2” = L.

It should be emphasized that no information on g; and g are available with

either Alice or Bob except the above normalization condition.

For the purpose of teleportation, Alice and Bob share a Bell state that acts as
quantum resource. Here we take the shared quantum state to be one of the

four Bell state given by

1

1T1) ap = E(\Om + [11)),

(8.2)



with Alice and Bob holding the first and second qubit, respectively.

The preparation of the entangled resource is shown in Figure 8.1.

Al0) —H
B|0) &

Figure 8.1 Circuit representation for the generation of entangled resource | Y1) 4p given in Eq. (8.2).

d

A classical channel is assumed to exist between Alice and Bob capable of
transmitting two classical bits from Alice to Bob. With the above setup, the
state |N), given in Eq. (8.1) is transmitted from Alice to Bob in the

following way. The whole scenario is depicted in Figure 8.2.

Classical Channel
JRC TS e >

Measurement
a_"\A
o
A Entangled B
Resource
Alice Bob

Figure 8.2 Diagram illustrating the single-qubit state transfer by teleportation. <!



First, Alice takes one particle from the pair constituting the Bell state, while
the other is retained by Bob. In the entangled state, the indices 4 and B refer
to the qubits in possessions of Alice and Bob, respectively. So Alice holds
qubits a (to be teleported, Eq. (8.1)), and 4 (one from the entangled pair
which is given in Eq. (8.2)), and Bob holds the qubit B. The joint state of the

composite three-qubit system is given by:
T) = N)a®|T1)aB
1
= (91/0) + 92/1))a ® ﬁum ®10) + 1) ® [1)) 4z

(8.3)
Alice carries out a measurement on her qubits (a, A), with respect to the Bell
basis specified by
(100) + [11))
‘T1> A= )
’ V2
(l00) — |11))
’T2> A — )
’ V2
(01) + [10))
’T3> A= ’
’ V2
01) — |10
L) on — (101) —[10))

V2
(8.4)

That 1s, Alice performs a Bell State Measurement (BSM) using the four basis
vectors {| Y1), |Y2),|Ys),|Y4)} described in Eq. (8.4).

To clearly express the outcome of her measurement, it is helpful to rewrite
the joint state of Alice's qubits as a superposition of the above vectors. This

can be achieved by employing the following general identities:



0) ®[0) = %(\Tﬁ +[T2)),
0) ®[1) = %(\T?ﬁ +[T4)),
1) ®[0) = %(\T:ﬁ —[T4)),
1) ®[1) = %(\Tﬁ — |Ta)).

(8.5)

Using Eq. (8.5), the total system, that is, Eq. (8.3) can be rewritten as

D)= S 0T00r ® (0010) + 02115+ T2)es © (210) — g2/1)5
+[T3)aa ® (91]1) + 92(0)) B+ |T4)aa ® (92[1) — 92/0)) B]

4
= ) [Ti)aa ®|vi)s.
=1

(8.6)

So far, we have only performed a basis change on Alice's subsystem. No
actual operations have been conducted and the overall state of the three
qubits remains the same. Alice begins the teleportation procedure by
performing a Bell state measurement (BSM) on her two qubits. This BSM
projects the system onto one of the four possible outcomes, each occurring

with equal likelihood which are

)aa ® (91]0) )) B
T2)aa ® (91/0) — g2[1)) 5,
T3)aa @ (91[1) + 92(0)) B,
T4)aa ® (91]1) — 92/0)) 5.



The two qubits held by Alice are now in an entangled state, and the
entanglement that initially existed between her and Bob's qubits is no longer
present. By this breakage the entangled resource originally utilized in the
teleportation process is lost forever. This indicates that the quantum resource
can be used only once. There is no reuse of the resource. At this stage Bob is

left with his qubit which is not entangled with any other qubit of the system.

Following the measurement, Alice informs her measurement result to Bob
through the assisting classical channel. Due to the fact that there are four
possible outcomes of Alice's BSM, two classical bits are necessary to convey
the result. Once Bob receives the classical information, he can obtain the
desired state to be teleported by the following procedure. Using this
knowledge, Bob applies an appropriate unitary transformation, specified in
Table 8.1, on his qubit to obtain the original state intended for teleportation.
In the above Table 8.1 9,,1, and 9, refer to the Pauli operators described in

Section 3.2.3. This concludes the protocol.

Table 8.1

Local unitary operations for Bob's qubit are
provided as determined by Alice's measurement <1

Alice's outcome State of Bob's site Bob's operation
T1)aa [v1) = (91[0) + 92/1)) B (I)s

T2)aa v2) = (110) — g2[1)) B (9:)B

Ts5)aa vs) = (g1]1) + 92[0)) B (92)B

T4)an va) = (91]1) — 92/0)) B (9:92)B

To illustrate, let us assume that Alice obtains the measurement result | 4) 44,
then the state of Bob's qubit becomes (g1|1) — g2|0)) 5. Now Alice conveys

her measurement result to Bob using a classical channel. After receiving this



information, Bob executes the appropriate unitary operation given in Table
8.1, which is (¥,9,)p on his qubit, and thereby creates the desired state at
his site. The teleportation is thereby accomplished. The other three cases

arising out of Alice's measurement are similar.

The following are some special features of the teleportation process

described above.

The state to be transmitted is arbitrary. It 1s unknown and remains so

during the execution of the protocol.
The state 1s completely lost to Alice after the protocol is finished.

The assistance of a classical communication channel 1is

indispensable.

Once used, the quantum resource (which is a Bell pair here) is lost. It

cannot be reused.

The protocol is perfect by which it is meant that there is no case of

failure.

There is no upper bound of the physical distance by which the sender

and the receiver can be separated.

Remark: The Bell-state utilized as a quantum resource may well be any of
the remaining three Bell-states |Y2) 4B, |Y3)ap and |Y4) 4. The protocol

will require slight modification with the main features remaining the same.

Alternatively, the same problem of transferring a single-qubit state between
two communicating parties Alice (the sender) and Bob (the receiver) can be

performed using a computational basis as the measurement basis. Alice aims



to transfer an unknown state, as specified in Eq. (8.1) to Bob, where g; and

g1 are complex numbers chosen such that
91| + [g2]* = 1.

For this, we use the two-qubit Bell state given in Eq. (8.2) as a quantum
resource between Alice and Bob. Thus, Alice possesses two qubits: the
particle a, which is the one to be teleported and is described by Eq. (8.1), and
particle 4, that is the first qubit of the quantum resource defined in Eq. (8.2).
Bob holds qubit B, the counterpart in the entangled pair shared with Alice.
The entire three-particle system is expressed in Eq. (8.3).

In order to enable a successful measurement using the computational basis,
Alice applies two quantum operations: a controlled-NOT gate is applied by
Alice with ‘a’ as control qubit and ‘4’ as target qubit after which she applies
a Hadamard gate on her qubit ‘a’. These operations transform the state of the
overall three-qubit system into a superposition of the states belonging to the
computational basis of the qubits a and A4. After applying these

transformations, the system evolves into the following state:
) =Ma®|T1)an

— (0200} + g2/ 1))a ® %am ®(0) + 1) ® |1)) a5

CNOT = g1/000) + g1]011) + g2[110) + g2[101)] , .

|
—= T
Hadamard Gate = - [g1(10) + [1))4]00) 45 + 81(]0) + [1))[11} 45
+ 92(]0) — 1))a]10) 45 + g2(|0) — [1))4|01) 45]
= [(9210) + 82/1) 5100) o + (g1]1) + 92/0))5[01 )
+ (91]0) — 92/1)) B|10)aa + (g1]1) — 92[0)) B|11)a4].




(8.7)

Alice now measures her two qubits (a,A) in the computational basis
{]00), |01), |10), |11)}. After the measurement, Alice sends the result of her
measurement through the 2-bit classical channel to Bob. Depending on the
two-bit outcome communicated by Alice, Bob applies a specific Pauli gate
to recover the initial quantum state |X), as outlined in Table 8.2. In the above
Table 8.2 9,,7, and 9, refer to the Pauli operators described in Section
3.2.3. This is the end of the protocol.

Table 8.2

State at Bob's location and corresponding unitary
operations for Bob conditioned on Alice's results <

Alice's outcome State of Bob's site Bob's operation
100)04 (91/0) + 92[1)) B (I)B

101) 04 (91[1) + 92(0)) 5 (92)B

[10)4 (91/0) — 92[1)) B (9:)B

[11)aa (91[1) — 92(0))B (9:92) 5

Apart from teleportation protocols, there exists a separate class of similar
quantum communication processes, which are designed for creating known
quantum states at a distant place. Just the same as in the teleportation
processes, these protocols use entanglement and classical communication for
their accomplishment. They are called Remote State Preparation (RSP)
protocols. In some cases, the information of the known states can be divided
between two parties, where each party possesses only partial information
about the state. This leads to the use of a specific class of protocols called
Joint Remote State Preparation (JRSP) protocol. We discuss representative
cases of these protocols in the APPENDIX.
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9.1 INTRODUCTION

This chapter explicitly deals with the transfer protocols of arbitrary unknown quantum
states that involve two and three qubits. There is a large literature on the teleportation

of multi-qubit states of various kinds which follow the basic techniques of the

194].

9.2 TELEPORTATION OF ARBITRARY TWO-QUBIT STATES

This section outlines the scheme for teleporting unknown two-qubit general quantum
states between two parties, Alice and Bob. Alice wishes to transmit the following

general two-qubit state to Bob described as

IN) o0, = (91/00) + g2|01) + g3|10) + g4|11)),

(9.1)
where the parameters g1, go, g3, and g4 meet the normalization condition, that is,
4
D lel*=1.
k=1

The state is unknown to both Alice and Bob which is equivalent to the fact that the

coefficients g1, go, g3, and g4 are unknown except for the normalization relation. The
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protocol described here is given by G. Rigolin [133].

The following are the sixteen generalized Bell states, also referred to as G states for

simplicity (introduced by Rigolin [133]). These states are classified into four different

groups.

Group 1:

Group 2:

Group 3:

Group 4:

3(10000) + [0101) + [1010) + |1111)),
1(|0000) + |0101) — |1010) — [1111)),
5(10000) — [0101) + [1010) — |1111)),
5(]0000) — |0101) — |1010) + |1111))

2 (looo1
2 (looo1
2 (looo1
2(looo1

+10100) 4 |1011

) + [1110)),
+10100) — |1011

)

)

)

— |1110)
Dk
)

— 0100) + |1011
— |0100) — |1011

— [1110
+[1110

~ ~ ~— ~~—
~ ~ ~— ~—

)
);
)
)

(10010) + [0111) + [1000) + [1101)),

L
2
1
2
1
2
1
2

(|0010) + |0111) — |1000) — |1101)),
(0010 — [0111) + [1000) — |1101)),
(10010) — [0111) — |1000) + |1101)).

(9.2)

(9.3)

(9.4)



G1s) = +(]0011) + [0110) + [1001) + [1100}),
|G1a) = £(|0011) + |0110) — [1001) — [1100)),
|G15) = 5(|0011) — |0110) + |1001) — [1100)),
|G16) = +(|0011) — [0110) — |1001) + |1100)).

(9.5)

The above G-states satisfy the condition given by

16
Y IGH(Ghl =T
k=1

and
(GElG1) = O
and thus form an orthonormal basis, which is generally known as the G-basis.

Now, Alice and Bob share one of the sixteen G states to utilize it as the quantum

resource in the teleportation process with the first two qubits held by Alice and the

remaining two by Bob.

Assume that Alice and Bob share the state
1
\G1>A1A23132 = 5(\0000) + |0101) 4 [1010) + |1111)),

where the pair of qubits (A1, As) and (B7, Bs) belong to Alice and Bob, respectively.
The circuit diagram corresponding to the generation of quantum resource

|G1) 4,4,B,B, 18 given in Figure 9.1. Also there is a classical channel between Alice
and Bob.



A] |O> — H 4

Ay |0) — H ’
B |0)
B> |0)

Figure 9.1 Circuit diagram for generation of the quantum resource |G1). <

4R
1/

N
N

The initial combined state of the system is described as

|F> = |N>a1a2 ® |G1>A1A2BIBZ
= (91/00) + 92/01) + g5|10) + g4[11))q,a,

1

® 5 (10000) +[0101) + [1010) + [1111)) 4,4,5,5,

— %(|000000> +1000101) 4 |001010) + [001111)) a,0,4,4,8,8,
+ %(\01000@ +1010101) 4 |011010) + [011111) 4,0, 4, 4,3, 5,
+ %(uoooom +(100101) 4 |101010) + [101111)) g 0,4, 4,8,B,

+ %(|110000> +[110101) + |111010) + |111111))aya,4, 4, 5,5,

(9.6)

No measurement has taken place yet, so the state of the qubits remains unchanged.

Applying Egs. (9.2) — (9.5), the combined state |I") given in Eq. (9.6) can be written as
1 J8
|F> = Z Z |Gj>a1a2A1A2|Uj>Bley

J=1

(9.7)



where the states |v;) are given in Table 9.1.

Table 9.1

Reduced state and Bob's unitary operations conditioned on Alice's
outcomes J

Alice's result Reduced state with Bob Bob's perfect operation
G1) [u1) = (91/00) + g2[01) + g3[10) + g4[11)) 5,5, I

G2) [uz) = (91/00) + g2[01) — g3[10) — g4[11)) B, 5, (9:) B,

G3) lus) = (91/00) — g2[01) + g3[10) — g4[11)) 5,5, (9.) B,

G4) lva) = (91/00) — g2[01) — g3[10) + g4[11)) 5, 5, (9:)B, ® (9:) B,

G5) lus) = (91/|01) + g2[00) + g3[11) + g4[10)) 5,5, (¥2) B,

Go) lve) = (91/01) + 92/00) — g3[11) — g4/10)) 5, 5, (9:)B, ® (¥2) 5,

G7) luz) = (91/01) — g2[00) + g3[11) — g4[10)), 5, (9:94) B,

|Gs) lus) = (91/01) — g2/00) — g3|11) + 94/10)) B, B, (92) B, ® (9,9:)B,

Go) lug) = (91/10) + g2[11) + g3[00) + g4[01)) 5,5, (¥2) B,

|G1o) [uio) = (91/10) + g2[11) — g3/00) — g4/01)) 5, 5, (9:92) B,

|G11) lvi1) = (91/10) — g2[11) + g3/00) — g4/01)) 5,5, (9:)B, ® (¥2) B,

G12) lvi2) = (91/10) — g211) — g3/00) + 94/01)) B, 5, (92)B, ® (9:92) B,

|G13) lvis) = (g1/11) + 92/10) + g3/01) + 94/00)) B, 5, (Y2)B, ® (V2)B,

|G14) lv14) = (g1/11) + g210) — g3/01) — 94/00)) B, 5, (92)B, ® (92)B, ® (¥2)B,
G15) luis) = (g1/11) — g2[10) + g3/01) — g4/00)) 5,5, (9:92)B, ® (92) B,

G16) luie) = (g1/11) — g2[10) — g3/01) + 94/00)) 5, 5, (9:2)B, ® (9:)B, ® (92)B, ® (V)

Alice then executes a measurement on her four qubits in the G-basis mentioned above.
Following the measurement, she transmits her outcomes classically to Bob, indicating
the specific G state that was observed. With this information, Bob is able to identify
and apply the correct unitary transformation to his two qubits, allowing him to
faithfully reconstruct the general two-qubit quantum state originally in the possession

of Alice. The corresponding Pauli operations against Alice's possible results are



provided in Table 9.1. A visual representation of the entire protocol is presented in

Figure 9.2. The following is an illustration of the above.

Figure 9.2 Schematic diagram of transferring a general 2-qubit state through quantum teleportation. <1

Suppose, for instance, that Alice obtains the measurement result |G11)q,a,4,4,, then

the reduced state at Bob's site becomes
(91]10) — go|11) + g3]00) — g4|01)) B, B, -

Alice now uses the classical communication channel to transfer her results to Bob.
Upon receiving this information, Bob performs the corresponding unitary operation
(9,)B, ® (¥2) B, on his qubits as shown in Table 9.1. This completes the teleportation
of the general two-qubit state.

9.3 TELEPORTATION OF ARBITRARY THREE-QUBIT STATES

We now describe a teleportation protocol that enables the transfer of a general three-
qubit state from Alice to Bob. There is no limit to the physical distance by which they
can be separated. The protocol described here is designed by Yi-you et al. [112]. The

unknown quantum state to be teleported is represented as follows:



IN) 1050, = (91/000)  + g2]001) + g3]/010) + g4/011) + g5/100)
+ g6/101) + g7[110) + gs[111)),

(9.8)

where Alice possesses the qubits ay, as, az and the parameters obey the criteria for the

normalization condition, that is,

8
S lel?=1.
=1

At the outset Alice and Bob share three W-class states which are given by

|E1) 4,4,8, = +(|100) +[010) + v/2|001)) 4, 4,5,
|E2>A3A4B2 = %(|1OO> + |010> + \/§|001>)A3A4Bz’
\E3) 4,4,8, = +(]100) +010) + v/2|001)) 4, 4,5,
(9.9)

Alice holds the qubits ay, as, a3, A1, As, As, Ay, A5, Ag, whereas qubits By, Bs, Bs
belong to Bob.

Also there is a classical communication channel between Alice and Bob.

The total quantum system, composed of the twelve qubits, can be written as
|F> = ’N>a1a2a3 ® ’E1>A1A231 ® |E2>A3A4Bz ® ’E3>A5AGB3'
(9.10)

In order to transfer the original state given in Eq. (9.8) at the site of Bob, first Alice
executes three 3-qubit measurements on the basis containing a set of linearly
independent vectors {|e*), |w™)}, respectively. These are given by

“)

€% (0,4, 40) /(12 4541) (a0 4345) = 5 (/010) 4 001) + v/2100)),

1
2
|WE) (0, 4145) /(a2 4541) /(a5 45.45) = 3 (|110) + [101) £ /2]000)).

(9.11)



By a result of linear algebra, it is always possible for Alice to augment this set into a
basis, that is, to find a basis containing the above set of four ket vectors and then

perform the measurement.

After completing the measurement, Alice gets one of the 64 possible outcomes with
equal probability described in the following cases. The state of the remaining qubits
are detailed in Egs. (9.12) - (9.19).

Case I: Measurement result of Alice: |€) 4, 4,4, 165 ) ay 54,165 054, 4,

Then the state of the qubits remaining with Bob becomes

1
azAsAsg <€i‘azA3A4 <€i‘61A1A2 <€iHF> = §(91|OOO> +++ 92‘001> +++ 93‘010>

+ 4 + g4|011) + + & g5/100) £ + + gg|101)
+ 4 4 g7[110) & + + gg|111)) , 3,5,

9.12)
Case-II: Measurement result of Alice: [€%) 4, 4,4,16%) 0,454, 10T ) 0y 4544

Then the state of the qubits remaining with Bob becomes

1
azAsAg <wi|ﬂ2A3A4 <gi|ﬂ1A1A2 <5i||r> = g(i + +91|001> + g2|000> +++ g3|011>

+ 4 + g4]010) & + =+ g5/101) 4+ + + g¢|100)
+ &+ = g7|111) + + & g5[110)) B, B, B;-

(9.13)
Case-III: Measurement result of Alice: %) 4, 4,4, |WF ) ay4,4,1€T ) 0y 4, 46
Then the state of the qubits remaining with Bob becomes

1
azAsAg <€i’a2A3A4 <wi|ﬂ1A1A2 <€iHF> = §(+ + +gl‘010> +++ 92|011> + g3|000>

+ + + g4/001) + & =4 g5|110) 4 4 4 gg|111)
+ + :|:g7‘100> + + ﬂ:gg‘101>)313233.

(9.14)



Case-IV: Measurement result of Alice: [e¥)q,4,4,|w ) 4,454, |W0™) 0y 454,
Then the state of the qubits remaining with Bob becomes

1
0545 s (0" Lzt 4, (07|04, (€7 (|T) = o (£+491]011) +4+ g2[010) +++ g3/001)

+ g4/000) + + =+ g5|111) + + + gg|110)
+ + + g7|101> + + + gg|100>)313233.

9.15)
Case-V: Measurement result of Alice: |w™) o 4, 4,16%) ay454,1€T) 045 4,

Then the state of the qubits remaining with Bob becomes

1
azAsAg <€i|ﬂ2A3A4 <€i|a1A1A2 <wi ‘ |F> = §(++i91’100> i+ig?‘101> +:t:|:g3‘110>

+ =& = g4[111) + g5/000) = + + g|001)
+ + 4+ 97‘010> + 4+ + gg|011>)313233.

(9.16)
Case-VI: Measurement result of Alice: |w™)q,4,4,|65) 4,454, |w0™) 05454,

Then the state of the qubits remaining with Bob becomes

1
asAs Ag (0 Loy 454, (€™ |01 4,4, (W [T) = g (F+£01[101) ++£g5[100) £ £+ g5[111)

+ 4 + g4/110) £ + + g5/001) + g6|000)
+ £ + g7[011) + & + g3/010)) 5, 5,5,

9.17)
Case-VII: Measurement result of Alice: |w™) g 4,4,1w™) ay4,4,16F) a4, 4,

Then the state of the qubits remaining with Bob becomes

1
azAsAg <€i’a2A3A4<wi|ﬂ1A1A2 <wiHF> = §(+iigl‘110>iiigz‘lll> ++:|:g3’100>

+ + =+ g4[101) + & + g5/010) & & + g¢|011)
+ 97‘000> + 4+ + gg|001>)313233.



(9.18)
Case-VIII: Measurement result of Alice: |w™®) q,4,4,| 0T ) 0,454, | 0T ) ay 454,

Then the state of the qubits remaining with Bob becomes

1
azAsAg <wi‘ﬂ2A3A4 <wi|ﬂ1A1A2 <wiHF> = g(iiigl‘111> +++ 92’110> t++ 93|1O]—>

+ + & 94[100) =+ + g5[/011) + + + g6/010)
+ + + g7|001) + g5|000)) 5, 5,5,-

(9.19)

The notation above is explained as follows. The signs \4’ or \+’ from right to left in
the right hand side of Egs. (9.12) - (9.19) reflect to Alice's measurements of qubits
(a1 A414,),(ayA34,), (a3AsAg), respectively. Although the notations \t+’ of the
qubits By, By and B; in the second column of Table 9.2, Table 9.3, Table 9.4, Table
9.5, Table 9.6, Table 9.7, Table 9.8, Table 9.9 correspond to the measurement of qubits
(a1 A1A45), (ayA3Ay), (a3A5Ag), respectively. If the three-qubit measurement is \+4,

the notation \+" will be \4+’ and while in the other case it will be \—".

Table 9.2

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-l J

Alice's results Bob's operations

€™ ) 01414516 ) 04544 1€ ) 0545 (1), ® (1), ® (I) B,

|6 ) a1 414217 ) 134544187 ) a3 45 46 (e, ®)p, ® (9.) B,
e ) 01414516 ) 14544 € ) a5 4545 (D), ® (9.)B, ® (1) By
|6 ) 14142167 ) ar 454418 ™) a3 45 46 (I)B, ® (9.)B, ® (9.) 5
|67 ) a1 4142167 ) 0y 45441 ) a3 45 46 (9.)5, ® (I)p, ® (I) B,
€7 ) 01414516 ) 04544 € 7 ) 0546 (0.)5, ® (I)p, ® (9.) 5,
6™ ) a1 4142187 )ar45441€™ ) a3 45 46 (9.)B, ® (92) B, ® (I) B
|67 ) a1 4142167 ) a3 45441€ ™) a3 A5 46 (9.)B, ® (9.)p, ® (9.) B,




Table 9.3

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second

column for Case-ll <&

Alice's results

Bob's operations

|6 a1 4142167 ) a3 40| W™ ) a3 45 46 (1), ® (1), ® (V92) By
€ ) 014145 1€ ) 14544 [0 ) 0y 45 46 (), ® (I)p, ® (9,9.) B,
|6 ) 14142187 ) a5 40| W™ ) a3 45 46 (I)B, ® (9.) B, ® (92) s
|6 14142187 ) 14344/ W ™ ) a3 45 46 (I)B, ® (V) B, ® (9,9.) B,
€7 ) 01414516 ) a5 44 |0 ) 0y 45 46 (0.)B, ® (I)B, ® (92) B,
|67 ) a1 4142167 ) 14344/ W™ ) a3 45 46 (9.)B, ® (I)B, ® (9,9.) B,
€7 ) 0141458 ) 45 44| W ™) a5 45 46 (9.)B, ® (9.) B, ® (92) By
|67 ) 1414218 ™) 14344/ W ™ ) g 45 46 (9.)B, ® (92) B, ® (9,9.) By
Table 9.4

Bob's required unitary operations determined by Alice's

outcomes (first column), are presented in the second

column for Case-lll 4

Alice's results

Bob's operations

le* u1A1Az|w+ u2A3A4|€+ a3AsAs

+

|5Jr a1A1A2|w a2A3A4|€ azAsAs

|€+ u1A1A2|w_ a2A3A4|8 a3AsAg

+

+ +

ap W' ) azAzAy
|E A1A2| A3A |E

a3AsAe

+

|5 a1A1Az|w a2A3A4|8_ a3As Ae

|€ a1A1A2|w7 6121‘12.144|€Jr azAsAs

) ) )
) ) )
) ) )
€ 141421907 ) 024544 €7 ) a3 45 46
) ) )
) ) )
) ) )
) ) )

|€ a1A1A2|w7 a2A3A4|57 asAsAg

(g, ® (¥2)p, ® (1),
(1B, ® (92) B, ® (U.) B,
(1) B, ® (9,9.)p, ® (I) B,
(1) B, ® (9.9.) B, ® (V) B,
(9.)B, ® (92) B, ® (I) B,
(9.)p, ® (¥:) B, ® (9.) B,
(9.)B, ® (9:9.)p, ® (1),
(9.) B, ® (9:9.)B, ® (U.) B,

Table 9.5



Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second

column for Case-lV <&

Alice's results

Bob's operations

apAzAy |w azAsAg

apAzAy |w a3AsAg

+

apAzAy |w azAsAs

apAzAy |w™ azAsAg

")
)
)
014 Ay | W ) ay A, W
)
)
T )apdz4,|lw
)

)
)
)
)
jw™)
)
)
)

agAzAy |w azAsAg

(I)B, ® (¥2)B, ® (¥¢) B,

()3, ® (¥2)B, ® (¥27:) B,
(I)B, ® (¥29:) 5, ® (V) 3,
(I)B, ® (929:) B, ® (929:) B,
(9:)B, ® (¥z) B, ® (¥z) 3,
(9.)B, ® (¥2) B, ® (¥29.) B,
(92)B, ® (929.)B, ® (V) B,
(92)B, ® (029:)B, ® (9:9.) B,

Table 9.6

Bob's required unitary operations determined by Alice's

outcomes (first column), are presented in the second

column for Case-V J

Alice's results

Bob's operations

W) o414, 167 ) 0,454,167 ) 034544 (¥2)B, ® (I)B, ® (I)B,
W) 04,4567 ) 0,454,167 054544 (V2)B, ® (I)B, ® (9:) B,
W) a4,451€ ) ay454,18™ ) 0y 4544 (92)B, ® (92)B, ® (I)B,
W) 04,4516 ) 0,454,417 a5 4544 (¥2)B, ® (¥2)B, ® (9.)B,
W™ ) ay4, 4,167 ) ara54, 1€ ) ay 4544 (9:9.)B, ® (I)B, ® (I)B,
W™ )a14,45 167 ) 0,454,187 ) 0y 4544 (929:)B, ® (I)B, ® (92) B,
W™ ) 04,4516 ) 0,454,167 ) 034544 (929:)B, ® (92)B, ® (I)B,
W™ ) ay4,4, € ) 0,454,416 ) a3 4544 (929:)B, ® (9:)B, ® (9:)B,
Table 9.7

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second



column for Case-VI J

Alice's results Bob's operations
W) ar 145 |€ ") a4y, 10T ag 454 (92)5, ® (I)B, ® (J2) 8,
W) a1 45 [€") 0y 454,10 D2 454 (92)B, ® (I)B, ® (9292) 5,
W) a1 4,4,1€ ) ayaya W) aya544 (92)B, ® (92)B, ® (V2)B,
W) 04,4516 )0y 454, |0 ) ay 4544 (92)B, ® (92)B, ® (9:9.) B,
W™ )0y 4, 4,167 ) 0y 54, [0 ) 0y 4544 (929:)B, ® (I)B, ® (V2)B,
W™ ) a1 4,45 1€ ) 0y 454, |0 ) ay 4544 (929:)B, ® (I)B, ® (929>)
W™ )0y 414516 )0y a5 4, |w ) aya544 (929:)B, ® (92)B, ® (V) B,
W™ ) ay4,4, 1€ ) 0,454, /W ) 05454, (929:)B, ® (92)B, ® (9:95)
Table 9.8

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-VIl J

Alice's results Bob's operations

W) o, 4,4, 10 ) ay454, €T ) 0y 4544 (Y2)B, ® (¥2)B, ® (I)B,

|wF) ay4, 4,10 ) 0,454,167 ) 4544 (V2)B, ® (92)B, ® (9:) B,

W™ ) o, 4,4, 10 ) ay454,|€ ") ay 4544 (92)B, ® (9:9:)B, ® (I)B,

W) 0,4, 4,107 ) 0y 454,16 ) 0454, (V2)B, ® (929:)B, ® (9:)B,

W™ ) a 4,4, 10" ) aya54, 1€ ") aya544 (929:)B, ® (92)B, ® (I)B,

W™ ) oy 4,4, /W) ay454, 1€ ) aya544 (929:)B, ® (V2)B, ® (V.)B,

W™ ) a1 4, 4,107 ) 0y 454,16 ) a3 4544 (9292)B, ® (929:)B, ® (I)B,

W™ ) 4,4, W) 454, |€ )0z 4544 (929.)B, ® (929.)B, ® (9.)B,
Table 9.9

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-VIll J

Alice's results Bob's operations



Alice's results Bob's operations

|w™) o, 4,4, 10" ) 0,454,107 ) ay454, (92)B, ® (92)B, ® (92)B,

™) o, 4,4, 10" ) ay454,]0 7 ) ay 4544 (V2)B, ® (V2) B, ® (929) B,
|w™) 0, 4,4, /07 ) 0y 454|107 ) 0y 4544 (92)B, ® (929:) B, ® (V2) B,
W) 0,414, |07 ) 0y 454, | @0 ) ag 454, (92)B, ® (929:)B, ® (929.)B,
W™ ) ay4,4, 10" ) 0y 454,07 ) 0y 4544 (929.)B, ® (¥2) B, ® (¥2) B,
|w™) oy 4,4, 10" ) 0,454,]0 7 ) 0y 4545 (929:)B, ® (V) B, ® (929.) B,
W™ ) 014, 4,107 ) ar 454,10 ™) 05454 (9292)B, ® (9:9:)B, ® (V) B,
W™ ),y Ay lw ™ Yaydgdylw™ ) agasdq (9:92)B, ® (929) B, ® (¥29) B,

Now Alice notifies her outcomes to Bob over 6-bit classical channel. With the
classical information from Alice in hand, Bob finally executes appropriate Pauli
operations on his qubits to reconstruct the original state which Alice desires to
teleport. The following Table 9.2, Table 9.3, Table 9.4, Table 9.5, Table 9.6, Table 9.7,

Table 9.8, Table 9.9 include all 64 measurement outcomes of Alice and associated

Bob's operations. The protocol terminates at this point. The whole scenario is depicted

in Figure 9.3.



_— C(lassical Channel ~

Measurement \

Bob

Alice Entangled Resources

Figure 9.3 Schematic diagram for transfer of a general 3-qubit state using quantum teleportation. <1

As an instance, consider the case where Alice's measurement yields
jw™) [e7) [€™)
a1d14; agAzAy azAsAg-
Then the state of the remaining qubits becomes

( +4 — g1]100) + + — g|101) + — — g3|110) + — — g4|111)
+ g5/000) + + + g6/001) + — + g7|010) + — + g5|011)) B, B,B,
= (—91/100) — g2[101) + g3/110) + g4|111) + g5|000)

+ 96‘001> — 97‘010> — gg|011>)313233.

Alice uses a classical channel to transmit her measurement result to Bob who then

applies the relevant unitary operation from Table 9.6, which is
(1996192’)31 ® (192)32 ® (I)B3’

by which the state transfer is achieved. That is the end of the protocol.



A special feature about the above protocol is that it uses three separate entangled
resources. When more involved communication tasks are attempted, the use of multi-
partite entanglement resources with large number of qubits become inevitable. In view
of the fragile nature of the entangled states, and also due to the difficulties in the
generation of such entangled states, it is sometimes recommended, if possible to use
multiple quantum resources with relatively less number of involved qubits. The

present teleportation scheme is an instance of that kind of protocol.



10 Bidirectional Teleportation
Protocols

DOI: 10.1201/9781003561439-10

10.1 INTRODUCTION

In this chapter, the bidirectional teleportation process is described which is
mutual exchange of quantum states between two distant parties connected
through entanglement. Here, both parties act as sender and receiver.
Bidirectional teleportation schemes of various kinds have been discussed in
works like [19, 46, 59, 137, 159, 160, 162, 166, 203].

10.2 MUTUAL EXCHANGE OF SINGLE-QUBIT STATES

In this scenario, two individuals, Alice and Bob, each possesses a general

unknown one-qubit state denoted |N1) and |Ns), respectively, and given by

[R1)a = (91]0) + g2[1)),
[R2)6 = (h1]0) + b2|1)),

(10.1)

where coefficients g1, g, 1, 2 meet the normalization conditions, that is,

2 2
D lorl*=1 and ) [p*=1.
k=1 =1
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There is a classical communication channel connecting the two parties.

The objective is to exchange the two states between Alice and Bob which is

performed by a bidirectional teleportation protocol given by Verma et al. [163].

Assume that Alice intends to communicate her single-qubit quantum state |N;)
to Bob, whereas Bob intends to transfer his state |R9) to Alice simultaneously.
To achieve this goal, a 4-qubit cluster state is used as a quantum resource,
which is

1
| E) 4,8,4,8, = 5 (|0000) +[0011) + [1100) — [1111)) 4,,4,B,,

(10.2)

where the qubits (A;, A;) and (Bj,Bs) are held by Alice and Bob,
respectively. Figure 10.1 shows the representation of the corresponding

quantum circuit for generating the above quantum resource.

A |0) —H

=
=
o—e OD—9

Figure 10.1 Circuit representation for generation of the entangled resource given in Eq. (10.2). &

The system as a whole may be expressed as



‘F> - ‘N1>a ® ‘N2>b ® ‘E>A131A232
= (91/0) + 92/1))a ® (h1]0) + b2|1))s

1
® E(\OOOO) + |0011) + |1100) — |1111)) 4, B,4,B,-

(10.3)

Alice possessed the qubits (a, A1, A2) and the qubits (b, By, Bs) are held by
Bob, respectively. The teleportation process for exchange of qubit states is
completed through the following steps:

Step I Alice measures her qubits (a, A;) on the basis given by

Ti)es, = —=(00) +11),
Labes, = —=(00) - [11),
Lahes, = —=(01) + 10),
Lhes, = —=(01) - 10))

(10.4)

Following the measurement, she uses a 2-bit classical channel to transmit her
result to Bob.

Step II Bob performs a measurement on his qubits (b, Bs) on the basis given
by



X)om, = —=(100) + [11),
Ta)us, = —=(100) - 11),
Xajus, = —=(01) + 10))
L, = —=(01) - 10))

(10.5)

After the measurement, he sends his result to Alice via a 2-bit classical

channel.

Step III A controlled-Z (CZ) gate is applied to qubits (By, A2), using 4, as
control qubit and By as target qubit.

This operation requires that the party performing it will require to have access
to both the qubits 4, and B;. It can be either Alice or Bob or a third party

having access to 4, and B;. The above step is unavoidable in the protocol.

Step IV Finally, upon receiving the classical messages, both parties apply the
appropriate unitary operations corresponding to these messages to recover the

original quantum state. The protocol is thereby accomplished.
Now we discuss the protocol in details:

Using the Bell-basis given in Eq. (10.4), the whole system (10.3) can be

rewritten as



1
r) = 1 T1)a4,1T1)68,(151/00) + 9152(01) + g2b1[10) — g2b2[11)) B, 4,

)
+1T1)aa,|T2)6B,(9151/00) — g1h2|01) + gab1]10) + g2b2|11)) B, 4,
+ | 2)aa,|T1)68,(9101/00) + g1b2|01) — g2b1[10) + g2b2|11)) B, 4,
+ | T2)aa,|T2)68,(9101/00) — g1b2|01) — g2b1[10) — g2b2|11
+ | 1)aa,|T3)68,(9101/01) + g1H2]/00) — g2b1|11) + g2b2|10)) B, 4

(

BiAs

+1T3) 04,1 2)6B,(9151/10) + g1bh2|11) + gah1]/00) — g2b2(01)) B, 4,
+ | 4)aa,|T1)68,(9101/10) — g1b2[11) — g2b1|00) — g2b2|01)) B, 4,
g1b1|10) + g1h2[11) — g2H1[00) + g2b2|01)) B, 4,
+|T3)aa,|T3)68,(—0g1h1|11) + g1h2|10) + gah1[01) + gab2|0

))B,A
+Y3) a4,/ T4) 6B, (—0g1h1/11) — g1b2|10) + g2b1]01) —9262|00>)31A2
+ 1Y) a4, | T3) 0B, (—91h1]11) + g1bh2|10) — g2b1|01) — gah2|00)) 5, 4,

) ) ) ))

+ 1Y 4)aa,|Ta) o, (—91h1|11) — g1H2/10) — g2b1|01) + g2h2|00)) B, 4,

) ) ) )
) ) — ) )
) ) — ) )B4
) ) — ) ))B,4
+ | 1)aa,|T4)68,(91H1/01) — g1b2]00) — g2b1|11) — 92@2\10»3
+|Y2)aa,1T3)6B,(9151/01) + g1h2|00) + gab1]|11) — g2h2[10))
+1T2)a4,|T4)eB,(9151/01) — g1h2|00) + gab1|11) + g2b2[10)) B, 4,
) ) ) )) B, A
) ) ) )
) ) — ) )
+ [T 4)aa,|T2)om, ))B
0

) )
) )
) )
) )
) )
) )
) )
+1T3) 04,1 1)6B,(9101/10) — g1bh2|11) + g2h1]/00) + g2h2|01)) B, 4
) )
) )b
) )
) )
) )
) )
) )

B, A

(
(
(=
(=

(10.6)

Now, both parties make Bell-state measurement (BSM) on their respective
pairs of qubits (a,A4;) and (b,B;), and transmit the results of their
measurements to each other via 2-bit classical channels. After BSM, the

reduced states of qubits (B7, Ag) are as follows:



[v1) B4, = (9151(00) + g1b2|01) 4 g2b1[10) — g2b2|11)) B, 4,,
|’U2>B = (91h1/00) — g1H2(01) + g2b1(|10) + g2h2[11)) B, 4,,
[vs) B4, = (9101/00) + g1H2(01) — g261/10) + g2b2(|11)) B, 4,
|U4>31A2 (9151]/00) — g1h2[01) — g2h1[10) — g2b2|11)) B, 4,,
[vs) B4, = (9151|01) + g1H2]00) — g2b1|11) + g2b2[10)) B, 4,,
|v6) B4, = (9151|01) — g1H2]/00) — g2b1|11) — g2b2[10)) B, 4,,
|v7) Bi4, = (8101(01) + g1h2(00) + g2b1(11) — g2h2(10)) B, 4,
|vs) Bi4, = (8101(01) — g1h2|00) + g2b1(11) + g2h2(10)) B, 4,
[vg) B4, = (9151]10) — g1b2[11) + g261]00) + g2b2(01)) B, 4,,
‘U10>BIA2 = (g1h1/10) + g1b2[11) + g2h1/00) — g2h2(01)) B, a,,
[v11) B4, = (8191]10) — g1b2[11) — g2b1|00) — g2b2|01)) B, 4,,
[v12) Bi4, = (9101]10) + g1h2|11) — g2b1|00) + gab2|01)) B, 4,,
[V13) Bi4, = (—g1b1|11) + g1b2[10) + g2h1|01) + g2b2(00)) B, 4,,
[V14) B4, = (—91b1|11) — g1b2[10) + g2h1|01) — g2b2(00)) B, 4,,
|Ul5>B = (—g1b1/11) + g1h2[10) — g2h1|01) — g2b2(00)) B, 4,
[v16) B4, = (—8101|11) — g1b2[10) — g2h1|01) + g2b2(00)) B, 4

(10.7)

After that, a quantum phase gate operation given in Chapter 3 on qubits 4, and

By 1s needed to complete the bidirectional quantum teleportation. Here, the
control qubit is 4,, whereas B is the target qubit. The quantum states then turn

nto



91b1(00) + g1b2[01) + g2b1[10) + g2b2[11

[v1) B4, = ( ) ) ) )) Bi4s;
|’Ulz>B = (91h1/00) — g1h2|01) + g2b1(|10) — g2b2[11)) B, 4,
[v3) B4, = (9101]00) + g1b2[01) — g2b1[10) — g2b2[11)) B,4,,
vy) B4, = (8101/00) — g1h2[01) — g2b1[10) + g2b2|11)) 5, 4,,
lvg) B4, = (9151]01) + g1b2[00) + g2b1]11) + g2b2|10)) B, 4,,
[v6) Bi4, = (8151]01) — g1h2]00) + g2b1[11) — g2b2|10)) 5, 4,,
[v7) Bia, = (9151]01) + g1h2]00) — g2b1[11) — g2b2|10)) 5,4,
|Ué>B = (91h1/01) — g1h2|00) — g2b1(11) + g2b2[10)) B, 4,
[vg) B4, = (8151]10) + g1h2/11) + g251(00) + g2b2[01)) B, 4,
[v10) B4, = (9151]10) — g1h2[11) + g261]00) — g2h2(01)) B, 4,,
‘U11>B1A2 = (9161/10) + g1h2[11) — g2h1|00) — g2h2|01)) B, 4,,
[v15) B4, = (9151]10) — g1b2[11) — g2h1(00) + g2h2[01)) 5, 4,,
13) B4, = (8101[11) + g162]10) + g2h1|01) + g262]00)) 5, 4,,
[v14) B4, = (9151]11) — g1h2[10) + g2b1]01) — g202(00)) B, 4,,
\v;5>B = (9101/11) + g1h2|10) — g261/01) — 9202/00)) 5, 15,
[V16) Bid, = (8101/11) — g1h2|10) — g2b1]01) + 92h2]00)) 5,4

(10.8)

Following the exchange of the classical messages, both parties perform
appropriate unitary operations, which are given in Table 10.1, to obtain the
intended states. Through this procedure, Alice and Bob exchange the quantum
state with each other. However, a successful reconstruction of the transmitted
state is only possible if both participants cooperate. Figure 10.2 illustrates the

complete scenario of the protocol.

Table 10.1

Required unitary operations for Alice and Bob <!



Bob's unitary

Alice's unitary

operation

operations

Alice'soutcome Bob'soutcome Reducedstate

(1) B,

(1) a,

,1>B1A2

|v

IT1)

T1)

(1) B,

(92) 4,
(1) a,

,2>31A2

|T2) v

T1)

(192’)31

!
3>B1A2

T1) v

T2)

(192’)31
(I)Bl

(92) 4,

I
4>31A2

T2) v

T2)

ITs)

T1)

(I)Bl

(9:92) 4,
(ﬁx)Aa

%>B1A2

T4) v

T1)

(192)31

I7>BlA2

|T3) lv

1)

(ﬁz)31

(19#%),42
(I) Ay

Is>BlA2

Ta) v

T2)

(V) B,

;))BIAZ

IT1) v

Ts)

(1990)31

(92) 4,
(1) 4,

10>31A2

T2) v

Ts)

(ﬁzlﬂz ) Bq

11>31A2

1) v

T4)

(19219117)31
(191)31

(92) 4,

12>B1A2

T2) v

T4)

(V) 4,

13>B1A2
!

T3) v

T5)

(1953)31

(ﬁzﬁw)Az
(ﬁx)Az

14>31A2

|T4) lv

T5)

(ﬁzﬂw)Bl

15>B1A2
!

T3) v

T4)

(ﬁz'ﬂx)Bl

(192191')442

16>31A2

Ta) v

T4)
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Figure 10.2 Bidirectional teleportation protocol for exchange of single-qubit states. <1

To illustrate, assuming that Alice's and Bob's measurement outcomes are

T3)aa, and | To)yp,, respectively, the state of the remaining qubits becomes
1 2
(9151[10) + g1b2[11) + g251|00) — g262(01)) B, 4,

After that, to complete the above bidirectional communication protocol, a
quantum operation is applied on qubits By, A; where qubit 4, plays the role of
control qubit whereas qubit B, is the target qubit. Then the final reduced state

becomes

(9161/10) — g1b2|11) + g2h1/00) — gah2|01)) B, 4,
= (g1]1) + 92/0)) B, ® (h1|0) — h2|1)) 4,.

Finally, Bob and Alice execute appropriate unitary operations on their

respective qubits which are, from Table 10.1, given by (¥;)p, and (,)4,,



respectively. The mutual transfer of qubit states is thereby completed. That is
the end of the protocol.

10.3 ASYMMETRIC BIDIRECTIONAL TELEPORTATION
PROTOCOL OF (2 <+ 3)-QUBIT STATES

In this section, we explore a bidirectional teleportation protocol characterized
by its asymmetry. Specifically, one party, Alice, wishes to transfer a two-qubit
state to Bob, while simultaneously Bob intends to transmits a three-qubit state

to Alice, which are, respectively, given by

|N1>a1‘12 - (gl|00> +g2‘11>)7
N2)6,6,6, = (h1]000) + b2|111)),

(10.9)

where the complex coefficients gi,g9,01,02 meet the normalization
conditions, that is,

2

2
Z ’gm‘2 - 1a Z ’bn‘2 = 1.
m=1

n=1
Alice and Bob are connected through a classical communication channel.

The states |N;) and |Ns) are unknown to both Alice and Bob except for their
normalizations. The task is intended to be executed in an integrated manner

using a single entanglement resource.
For this purpose, an 8-qubit state is utilized as quantum resource amongst the
parties given by

1
|E) B, A1 By Ay By AsBiAy = 3 [/00000000) + |10100001)

+101011110) + [11111111)],



(10.10)

where Alice possesses the qubits (A1, Az, A3, A4) and Bob holds the qubits
(Bla B27 B37 B4)

The total system of 13 qubits is written as

) = [Ri)aa, @ [N2)6,0,6, © | E) BiA, ByA,BsAsBuA,
1
= (91/00) + g2|11))a,a, ® (h1|000) + h2|111))p 6,6, ® EHOOOOO()OO)
+ |10100001) + [01011110) + [11111111)] 5, A, B, 4,5, A, Bods-

(10.11)

Alice now performs a measurement on her three qubits (aq, ay, A4) using the
basis defined by

~]000) + |111) ~ |000) — [111)
[61) = 7 , |s2) = NG ,
~ |o01) + |110) ~|o01) — |110)
[S3) = 7 : |Sa) = 7
) — 010) 4 |101) o) — 010) — |101)
S5) = \/5 ) S6) = \/5 ’
) — \011):/%\100>’ ) — \011>\;§|100>

(10.12)

and Bob carries out on the basis given by
{’§i>blb233‘rj>[1334 1= 17 27 sy 8).7 = 17 27 37 4}7

where {|Y;)s,5, : j = 1,2, 3,4}s are the Bell states given by



1
1 T1)byB, = E(|00> + |11)),
T2 ,p, = %uom ),
30,5, = %uow 1 [10)),
T )0y, = —=(JOL) — 10)).

)

After the measurements both parties exchange their respective measurement
results through classical channels. Based on their outcomes, the parties execute
appropriate unitary operations to obtain the intended states. The complete

process is shown schematically in Figure 10.3.

— —
— — —

Entangled
Resource

Figure 10.3 Bidirectional teleportation protocol for transferring two- and three-qubit state. <J

We discuss the protocol in detail in the following.



The composite state [I') in Eq. (10.11) can be written as

4
|F> - (h1|000> + h2|111>)515253 ® Z |§i>a1a2A4 ® ‘Mi>B1A132A233A3B47
=1

where

|M1>B1A132A233A334 = gl(|0000000> + |0101111>)

+ g2(]1010000) + [1111111)),
|M2>B1A132A233A334 = gl(|0000000> + |0].0].]_11>)

— g2(]1010000) + |1111111)),
|M3) B4, B 4,8, A8, = 91(]1010000) + [1111111))

+ g2(]0000000) + [0101111)),
|M4) B,4,B,4,B54,8, = 91(/1010000) + [1111111))

— g2(]0000000) + |0101111)).

Now, Alice makes her measurement using the basis given in Eq. (10.12) and
communicates the outcomes using a classical channel to Bob. There are four
possible outcomes of Alice's measurement. We discuss their consequences in

the following four cases.
Case I:

Suppose that the measurement result of Alice is [$1)q,a,4,, then the state of the

remaining qubits becomes

IT'1) = (H1/000) + h2[111)) 0,6, ® [91(/0000000) + [0101111))
+ 92(‘]—010000> + |1111111>)]B1A132A233A334-

(10.13)

The above Eq. (10.13) can be re-expressed as



1) = [$1)6:6.8; ® | L1) 6,8, ® (g1H1/00000)
+ g1h2|01011> + ggf)l|10100> + 92b2‘11111>)BlA1B2A2A3

+ 1$1)6:6.8; ® | L2) 0,8, ® (g151/00000)
— g1h2|01011) + g2b1]10100) — g2b2|11111)) B, 4,B, 4,4,

+ |$2) 61658, ® | 1) 0,8, ® (g151/00000)
— g1b2|01011) + g2b1]10100) — g2b2|11111)) B, 4,B, 4,4,

+ |$2)616.8; ® | L2) 0,8, ® (g151/00000)
+ glf)2|01011> + ggf)1|10100> + g2f)2‘11111>)31AlB2A2A3

+ 1$3)016,8; ® | L3)p,8, ® (g151/01011)
+ g1f)2|00000> + 92h1|11111> + 9252\10100>)31A132A2A3

+ 1$3) 61658, ® | L4) 0,8, ® (g1h1]/01011)
— g1h2|00000) + g2b1[11111) — g2b2]10100)) B, 4, B, 4,4,

+ $4)6,0.B; ® | T3)p,8, ® (91h1/01011)
— g1h2/00000) + g2h1|11111) — g2h2|10100)) B, 4,B, 4,4,

+  |$4)6165B; ® | L4)p,8, ® (g151/01011)
+ glh2|00000> + ggf)1|11111> + 9252\10100>)31A132A2A3-

Now Bob performs his measurement on the corresponding basis and sends the

measurement outcomes through a classical channel to Alice.

If Bob's measurement result is [$1)6,6,8,/L1)6,B,, the resulting state of the

remaining qubits is as follows:

(glb1‘00000> + 91[)2’01011> + g2hl|10100> + 92h2|11111>)31A1B2A2A3
- (91‘00> + g2|11>)B1B2 X (b1‘000> + b2‘111>)A1A2A3'

When Bob obtains [$1)p,6,8;|Y2)6,5, as his measurement result, the state of

the rest of the qubits is as follows:

(glb1‘00000> — glb2\01011> + g2h1|10100> — g2h2|11111>)BlA132A2A3
= (91‘00> + g2|11>)3132 X (b1‘000> - f)2‘111>)141442443'



When Bob obtains [¢2)p,6,8;|Y1)6,8, as his measurement result, the state of

the rest of the qubits is as follows:

(glh1\00000> — glf)2]01011> + gzbl|10100> — g2h2|11111>)31A132A2A3
= (91/00) + g2[11)) B,B, ® (H1|000) — h2|111)) 4, 4, 4;-

When Bob obtains |$s)p,p,8,| L2)s,p, as his measurement result, the state of

the rest of the qubits is as follows:

(9161/00000) + g1h2|01011) + g2h1(10100) + gabh2|11111)) B, 4,B, 4,4,
- (91‘00> + 92|11>)B1Bz ® (b1‘000> + h2‘111>)A1A2A3'

When Bob obtains [$3)p,6,8;|Y3)s,5, as his measurement result, the state of

the rest of the qubits is as follows:

(glh1‘01011> + g1f)2‘00000> -+ g2f)1|11111> + 92h2|10100>)B1A132A2A3
= (91/00) + g2|11)) 5,3, ® (H1[111) + 62/000)) 4, 4,4,

When Bob obtains |§3)p,6,8,| T4)6,B, as his measurement result, the state of

the rest of the qubits is as follows:

(91h1]01011) — g1H2]00000) + g2h1|11111) — g2b2|10100)) 5, 4,8, 4,4
= (91/00) + 92[11)) 5,3, ® (h1|111) — §2/000)) 4,.4,4;-

When Bob obtains [s4)p,6,8;|Y3) 6,5, as his measurement result, the state of

the rest of the qubits is as follows:

(91H1/01011) — g1h2|00000) + gob1|11111) — g2h2|10100)) B, 4, B, 4,4,
= (91/00) + g2(11)) B, B, ® (h1[111) — h2[000)) 4, 4,4,

When Bob obtains |§4)p,6,8,| T4)6,B, as his measurement result, the state of

the rest of the qubits is as follows:

(9151/01011) + g1h2|00000) + gab1[11111) + g2b2|10100)) B, 4,B,4,4;
- (91‘00> + g2|11>)B1B2 X (b1‘111> + h2‘000>)A1A2A3'



Finally, to reconstruct the original quantum state, Alice and Bob each applies a
suitable unitary operation on their respective qubits. Details of the unitary

operations for Case I are provided in Table 10.2.

Table 10.2

Required unitary operations for Alice and Bob for Case | <J

Bob's outcome Alice's unitary operation Bob's unitary operation
$1)6,6,8; ® | T1)6,B, (IQI®I)a a,4, (I®1I)B,B,
$1) b,0,B; ® | T2) 0,8, (9. @I ®I)a, 4,4, (I®I)p,s,
|$2) 616,85 ® | 1) 6B, (I®9,R1I)a,4,4, (I®I)p,B,
|$2) b,0,8; ® | T2) 0,8, IQIQ®I)a 4,4, (I®1I)p,s,
|$3)b,6,8; ® | T3)06,B, (92 @ Ve ® Vi) 4,454, (I®1I)p s,
$3)6,6,B; ® | L4)6,B, (9.9, ® e ® V2) 4, 4,4, (I®1I)ps,
I$4) b,0,B; ® | T3) 0,8, (V2 ® 9,0 ® V) 4,454, (I®I)p,s,
IS4) b6,0,B; ® | T4) 0,8, (V2 @ ¥z ® Vz) 4,454, (I®I)p,s,

Case 11:

Suppose that Alice's measurement result is |¢2) q,q,4,, then the reduced state of

the remaining qubits is

IT2) = (h1]/000) + h2|111))p,6,6, ® [g1(/0000000) + [0101111))
— g2(]1010000) + [1111111))] 5, 4,3, 4,8, 4,5, -

(10.14)

The above reduced state Eq. (10.14) can be expressed as



T2) = [$1)6:6,8; ® | L1) 6,8, ® (g1H1/00000)
+ g1h2|01011> — ggf)l|10100> — g2b2‘11111>)31A132A2A3

+ 1$1)6:6.8; ® | L2) 0,8, ® (g151/00000)
— g1h2|01011) — g2b1[10100) + g2b2|11111)) B, 4,B, 4,4,

+ |$2) 61658, ® | 1) 0,8, ® (g151/00000)
— glb2|01011> — ng]1|10100> + g2b2‘11111>)B1AlB2A2A3

+ |$2)616.8; ® | L2) 0,8, ® (g151/00000)
+ 91h2/01011) — g2h1|10100) — g2h2|11111)) B, 4, B, 4,4,

+ 1$3) 01658, ® | L3) 0,8, ® (g151/01011)
+ g1h2/00000) — g2bh1]11111) — g2h2|10100)) B, 4, B, 4, 4,

+ 1$3)61658; ® | L4)p,8, ® (g1h1/01011)
— g1h2/00000) — goh1|11111) + g2h2|10100)) B, 4,B,4,4,

+ $4) 6,008, ® | T3)p,8, ® (9151/01011)
— g1h2/00000) — g2h1|11111) + g2h2]10100)) B, 4,B, 4,4,

+  |$4)6165B; ® | L4)p,8, ® (g151/01011)
+ g1h2/00000) — gobh1[11111) — 92b2‘10100>)31A1B2A2A3-

Now Bob makes his measurement on the basis mentioned above and transmits

it to Alice by the use of a classical channel.

If the measurement performed by Bob yields |s1)p,6,85|Y1)06,8,, then the rest
of the system is described by the state

(glb1‘00000> + 91[)2’01011> - g2hl|10100> - 92h2|11111>)31A1B2A2A3
- (91‘00> - g2|11>)B1B2 X (b1‘000> + b2‘111>)A1A2A3'

If the measurement performed by Bob yields |s1)p,6,8,| L2)0,8,, then the rest

of the system evolves into the state

(glb1\00000> — glf)2\01011> — g2f)1|10100> + g2h2|11111>)BlAleA2A3
= (91‘00> - g2|11>)3132 X (b1‘000> - f)2‘111>)141442443'



If the measurement performed by Bob yields |s2)p,6,8;|Y1)06,8,, then the rest
of the system is described by the state

(glh1\00000> — glf)2]01011> — g2bl|10100> =+ 92h2|11111>)BlA132A2A3
= (91/00) — g2[11)) B,B, ® (H1/000) — h2|111)) 4, 4, 4;-

If the measurement performed by Bob yields |s2)p,6,5,| Y 2)p,5,, then the rest
of the system is described by the state

(9161/00000) + g1h2|01011) — g2h1(10100) — gabh2|11111)) B, 4,B,4,4,
- (91‘00> - 92|11>)B1Bz X (b1‘000> + h2‘111>)A1A2A3'

If the measurement performed by Bob yields |¢3)p,6,8,|L3)0,8,, then the rest
of the system is described by the state

(glh1‘01011> + g1f)2‘00000> — g2f)1|11111> — 92h2|10100>)B1A132A2A3
= (91/00) — g2|11)) 5,3, ® (H1[111) + 62/000)) 4, 4,4,

If the measurement performed by Bob yields |s3)0,0,8,| T4)0,B,, then the rest
of the system is described by the state

(9161/01011) — g1h2/00000) — g2h1[11111) + g2h2[10100)) B, 4,B,4, 4,
= (91/00) — 92[11)) 5,5, ® (h1|111) — §2(000)) 4,.4,4;-

If the measurement performed by Bob yields |s4)p,6,8;|Y3)6,8,, then the rest
of the system is described by the state

(91H1/01011) — g1h2|00000) — gob1|11111) + g2b2|10100)) B, 4, B, 4,4,
= (91/00) — g2(11)) B, B, ® (h1[111) — h2[000)) 4, 4,4,

If the measurement performed by Bob yields |s4),6,8,| T4)06,B,, then the rest
of the system is described by the state

(9151/01011) + g1h2|00000) — gah1[11111) — g2b2|10100)) B, 4,B,4,4;
- (91‘00> - g2|11>)B1B2 X (b1‘111> + h2‘000>)A1A2A3'



In the final step, Alice and Bob perform appropriate unitary transformations to
retrieve the initial state. In Case II, the unitary operations are listed in Table
10.3.

Table 10.3

Appropriate unitary operation performed by
Alice and Bob for Case Il &

Alice's unitary Bob's unitary
Bob's outcome operation operation
161) 6,008, @ | T1)0s8, (I RIQI)A 4,4, (I®7Y.)B,B,
[$1) 6,608, ® | T2)os8, (I @V, QI)a 4,4, (9. ®1I)B,B,
1$2)6,0,8; ® [T1)6,8, (V. I ®1I)a 4,4, (9. ®I)B,B,
1$2)6,0,8; ® [Y2)o,B, (I®I®I)a a,a4, (I ®9.)B,5,
1$3) 6,008 ® | L3) 03B, (V2 ® Vo ® V) 4,454, (9, ®I)B,B,
1$3) 6,008, ® | Ta)osB, (V2 ® Ve ® V:95)4,4,4, (I ®7Y:)B,B,
1$4) 6,008, ® | L3)0sB, (V2 ® V:0: @ V5)a,404, (V:®1)BB,
1$4) 016585 ® | T4)p,B, (V2 ® V2 @ V1) 4,454, (I®Y.)B,B,

Case I11:

Suppose that the measurement result of Alice is |$3)q,a,4,, then the state of the

remaining qubits becomes

IT3) = (H1]000) + bh2|111))p 6,6, ® [91(/1010000) + [1111111))
+ gz(‘0000000> + |0101111>)]B1A132A233A334’

(10.15)

The above reduced state, given in Eq. (10.15), can be re-written as



T3) = [$1)6:6,8; ® | L1)6,8, ® (g1H1/10100)
+ g1b2[11111) + g2b1]/00000) + g2H2(01011)) B, 4, B, 4,4,

+ [$1)6,0:B; ® | L2) 0,8, ® (g1h1/10100)
— glf)2|11111> + ng)1|00000> — g2h2‘01011>)B1A132A2A3

+ |$2) 61658, ® | L1)p,8, ® (g151/10100)
— g1h2|11111) + g2h1|00000) — g2h2(01011)) B, 4,B,4, 4,

+ |$2)616.B; ® | L2)p,8, ® (g151/10100)
+ g1b2|11111) + g2b1]/00000) + g2h2[01011)) B, 4,B,4,4,

+ 1$3) 01658, ® | L3)p,8, ® (g1h1/11111)
+ glf)2|10100> + 92[]1|01011> + g2b2‘00000>)31A132A2A3

+ [63)6,02B; ® | T4) 0,8, ® (g1b1/11111)
— 91h2/10100) + g2h1|01011) — g2h2|00000)) B, 4,B, 4, 4,

+ |$4) 61658, ® | L3)p,8, ® (g1h1/11111)
— g1h2/10100) + g2h1/01011) — g2H2|00000)) B, 4, B, 4,4,

+ |$4)0165B; ® | L4)p,B, ® (g1h1/11111)
+ glf]2|10100> + ng)1|01011> + gzb2‘00000>)31AlB2A2A3.

Now Bob performs his measurement on the corresponding basis and sends the

measurement results to Alice via a classical channel.

After Bob measures his qubits and finds them in state |s1)p,6,85|Y1)6,5,, the
other qubits in the system are described by the state

(g1h1[10100) + g1h2[11111) + g2h1/00000) + 92h2|01011>)BlA132A2A3
- (91‘11> + g2|00>)B1B2 X (b1‘000> + b2‘111>)A1A2A3'

After Bob measures his qubits and finds them in state |s1)p,6,85| Y 2)6,5,, the
other qubits in the system are described by the state

(g1h1]10100) — g1h2[11111) + g2h1|00000) — g2H2|01011)) B, 4,8, 4,4,
= (91‘11> + g2|00>)3132 X (b1‘000> - f)2‘111>)141442443'



After Bob measures his qubits and finds them in state |¢2)p,6,8,| 1) 0,8,, the

other qubits in the system are described by the state

(glh1‘10100> — glf)2’11111> + gzb1|00000> — 92b2|01011>)BlA132A2A3
= (91/11) + g2[00)) 5,5, ® (H1/000) — h2|111)) 4, 4, 4;-

After Bob measures his qubits and finds them in state [$3) 5,5,/ L2) 6,5, the
other qubits in the system are described by the state

(glb1‘10100> + g1f)2\11111> -+ gzh1|00000> + g2h2|01011>)B1A132A2A3
- (91‘11> + 92|00>)B1Bz ® (b1‘000> + h2‘111>)A1A2A3'

After Bob measures his qubits and finds them in state |$3)p,6,8;|Y3) 6,5, the
other qubits in the system are described by the state

(g1b1|11111) + g1H2]/10100) + goh1|01011) + 92h2|00000>)B1AleA2A3
- (91‘11> + g2|00>)B1B2 ® (h1‘111> + f)2‘000>)Alz‘124‘13'

After Bob measures his qubits and finds them in state |3)p,6,8,|T4)0,B,, the

other qubits in the system are described by the state

(g1h1|11111) — g1H|10100) + g2h1/01011) — g2b2|00000)) 5, 4, B, 4,4
= (91/11) + 92/00)) 5,5, ® (h1|111) — §2/000)) 4,.4,4;-

After Bob measures his qubits and finds them in state |s4)p,6,8,|Y3)6,5,, the
other qubits in the system are described by the state

(g1H1/11111) — g1bh2[10100) + g2h1|01011) — g2h2|00000)) B, 4, B, 4,4,
= (g1/11) + 92(00)) B, B, ® (h1[111) — h2[000)) 4, 4, 4,-

After Bob measures his qubits and finds them in state |s4)p,6,8,| L4)06,B,, the
other qubits in the system are described by the state

(g1b1|11111) + g1H2(/10100) + goh1|01011) + 92hz|00000>)B1A132A2A3
- (91‘11> + g2|00>)B1B2 X (b1‘111> + h2‘000>)A1A2A3'



Finally, to recover the intended state, Alice and Bob perform appropriate
unitary operations on her/his qubits, respectively. The unitary operations

corresponding to Case III are summarized in Table 10.4.

Table 10.4

Appropriate unitary operation performed by Alice
and Bob for Case Il J

Bob's outcome Alice's unitary operation  Bob's unitary operation
1$1)6,658; ® | T1)6,8, ([ QIRI)a n,4, (92 ® ¥5)B,B,
1$1) by6,B; @ | L2)os8, (I QV.QI)A 4,4, (Y2 ® ¥2) BB,
1$2) 616,85 ® | T1)0,8, (0: QI RI) 4 a,4, (92 ® 92)B,B,
|$2)b,0,8; @ [T2)b,8, (I ®I®1I)aa,4, (Y2 ® ¥2)B,B,
63)61058; ® [L3)6,B, (V2 ® 2 @ Vi) a,4,4, (V2 ® 94) B, B,
1$3)b,6,8; ® | Ta)o,B, (V2 ® Vo @ 9,05) 44,4, (92 ® 92)B,B,
1S4) b,05B; @ | L3)0sB, (P2 @ ¥z ® V,02) 4,454, (92 ® 92) BB,
1$4) b,09B; @ | Ta)o,B, (2 @ V2 ® Vz)4,4,4, (92 ® ¥5) BB,

CaselV:

Suppose that the measurement result of Alice is [S4)q,a,4,, then the state of the

remaining qubits becomes

IT4) = (H1]/000) + b2|111))p .6, ® [91(]1010000) + [1111111))
— g2(/0000000) + [0101111))] 5, 4,B,4,B,4,B,-

(10.16)

The reduced state given in Eq. (10.16) can be written as



T4) = [$1)6:6,8; ® | L1) 6,8, ® (g1H1/10100)
-+ glh2|11111> — gzh1|00000> — g2b2‘01011>)31A132A2A3

+ [61)6,0:B; ® | L2) 0,8, ® (g1h1/10100)
— g1h2|11111) — g2h1|00000) + g2h2|01011)) B, 4,B, 4,4,

+ |$2) 61658, ® | L1)p,8, ® (g151/10100)
— glf)2|11111> — ng]1|00000> + g2b2‘01011>)B1AlB2A2A3

+ |$2)6:6.8; ® | L2) 0,8, ® (g151/10100)
+ g1h2|11111) — g2H1]/00000) — 92h2‘01011>)31A1B2A2A3

+ 1$3) 01658, ® | L3)p,8, ® (g1h1/11111)
+ 91h2/10100) — g2h1|01011) — g262|00000)) B, 4, B, 4,4,

+ [63)6,02B; ® | T4) 0,8, ® (g1b1/11111)
— 91h2/10100) — g2h1|01011) + g2h2|00000)) B, 4,B, 4, 4,

+ |$4) 61658, ® | L3)p,8, ® (g1h1/11111)
— g1h2/10100) — g2h1|01011) + g2H2|00000)) B, 4, B, 4,4,

+ |$4)0165B; ® | L4)p,B, ® (g1h1/11111)
+ g1h2/10100) — g2h1/01011) — 92b2‘00000>)31A1B2A2A3-

Now Bob executes his measurement on the corresponding basis and sends the

measurement results to Alice via a classical channel.

Suppose that his measurement outcome is |§1)p,6,8,| Y1)0,8,, the resulting

state of the remaining qubits is as follows:

(9151\10100> + g1f)2’11111> — 92[)1|00000> — 92h2|01011>)B1A132A2A3
- (91‘11> - g2|00>)B1B2 X (b1‘000> + b2‘111>)A1A2A3'

Suppose that his measurement outcome is |$1)p,6,8;|Y2)6,B,, the resulting

state of the remaining qubits is as follows:

(glb1‘10100> — glb2‘11111> — g2f)1|00000> + g2h2|01011>)BlA132A2A3
= (91‘11> - g2|00>)3132 X (b1‘000> - f)2‘111>)141442443'



Suppose that his measurement outcome is [$2)p,6,8;|Y1)6,B,, the resulting

state of the remaining qubits is as follows:

(9151]10100) — g1h2]11111) — g261/00000) + g2b2|01011)) 5, 4, B, 4,4,
= (1/11) — 92[00)) B,B, ® (91]000) — h2[111)) 4, 4,4,-

Suppose that his measurement outcome is [S3)p,0,B,| Y 2)p,B,, the resulting

state of the remaining qubits is as follows:

(glb1‘10100> + g1f)2\11111> — gzh1|00000> — gzh2|01011>)31A132A2A3
- (91‘11> - 92|00>)B1Bz ® (b1‘000> + h2‘111>)A1A2A3'

Suppose that his measurement outcome is [$3)p,6,8;|Y3)6,B,, the resulting

state of the remaining qubits is as follows:

(glh1‘11111> + g1f)2‘10100> — g2f)1|01011> — 92h2|00000>)B1AleA2A3
= (91[11) — 92/00)) 5,3, ® (H1[111) + 62/000)) 4, 4,4,

Suppose that his measurement outcome is [$3)p,6,B,| Y 4)0,B,, the resulting

state of the remaining qubits is as follows:

(g1h1|11111) — g1H2]10100) — g21/01011) + g2b2|00000)) 5, 4, B, 4, 4
= (91/11) — 92(00)) 5,5, ® (h1|111) — §2(000)) 4,.4,4;-

Suppose that his measurement outcome is |4)p,6,8,|Y3)0,8,, the resulting

state of the remaining qubits is as follows:

(91h1/11111) — g1h2[10100) — gob1]01011) + g2b2|00000)) 5, 4,5,4,4,
= (g1/11) — 92/00)) B,B, ® (h1[111) — h2|000)) 4, 4,4,-

Suppose that his measurement outcome is [S4)p,6,B,| Y 4),B,, the resulting

state of the remaining qubits is as follows:

(glh1‘11111> + glh2’10100> - g2h1|01011> - g2h2|00000>)B1A1B2A2A3
- (91‘11> - g2|00>)B1B2 X (b1‘111> + h2‘000>)A1A2A3'



Finally, to recover the intended states, Alice and Bob perform appropriate
unitary operations on their respective qubits. A detailed overview of the

unitary operations for Case IV is given in Table 10.5.

Table 10.5

Appropriate unitary operation performed by
Alice and Bob for Case IV J

Alice's unitary Bob's unitary

Bob's outcome operation operation

9.0, ® 9

IQIRI) A n,4, <
¥ @ 9,9,

BB,
I ® 192 ® I)A1A2A3 B1B2

P, QI QI)A 4,4, 9.9, ® ¥2)B,B,

IQRI®I)A a4, Y ® 9.9:) B, B,
3.9, @Y,
¥ @ 1,9,

9.0, ® 9

191‘ ® 19;1: ® ﬂz7~9$)A1A2A3 BIBZ

Y, @0, ® 192’191‘)141142443 BB,

) ( ( )
) ( ( )
) ( ( )
) ( ( )
1$3) 6,00B; ® | L3) 03B, (V2 ® Vo ® V) 4,454, (V2 @ 9.9:)B,B,
) ( ( )
) ( ( )
) ( ( )

'l9m ® '191; &® ﬂx)A1A2A3 B1B;

The bidirectional exchange of state is thus completed.
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11.1 INTRODUCTION

In this chapter, teleportation under supervision, that is, controlled teleportation process is
described. Particularly, we describe controlled bidirectional and cyclic teleportation
protocols. Some other works on teleportation under supervision are listed in [30, 31, 53,
protocols under multiple and hierarchical control have appeared in works like [17, 65, 138,
182,183,184, 192].

11.2 BIDIRECTIONAL CONTROLLED TELEPORTATION PROTOCOL
OF TWO SINGLE-QUBIT STATES

In this chapter, we explore the role of controller in teleportation protocol. These protocols
which are performed under the supervision of a controller (sometimes called a supervisor)
are known as controlled teleportation protocols. A controller is a party who acts toward the
end of the protocol and signals for the ultimate steps to be executed for the completion of
the process. If the controller is not satisfied by the performances of the other parties, then
the controller can withhold his action in which case the teleportation process cannot be
completed. In this section we describe a bi-directional teleportation scheme while in the

following section a cyclic teleportation protocol is presented.

We consider the problem of exchange of two single-qubit quantum states between two
parties Alice and Bob with the help of a third party Charlie, who acts as a controller in this
protocol. Here, both Alice and Bob act as a sender as well as a receiver. The protocol we
describe for performing the above task is a controlled bi-directional protocol given by Zha
et al. [196].
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Suppose that Alice wants to transfer to Bob the quantum state given by
R1)a = (91/0) + g2[1))
(11.1)
and that Bob wants to transfer to Alice the quantum state given by
[R2)e = (b1]0) + b2[1)),
(11.2)

where all the coefficients satisfy the normalization conditions, that is,
911 + [g2]* = 1

and
[B1]* + [ho|* = 1.

There is another party, Charlie by name, who is the controller of the protocol.

A five-qubit cluster state is used as a quantum channel to achieve this job by connecting

three mutually separated parties, which has the form:

|E) = —(]00000) + [00111) + |11010) + |11101)) 4,5, 4,¢B,>

1
2
(11.3)

where the qubits (A1, A2), (B1B2) and C are in the possessions of Alice, Bob and Charlie,
respectively. The entanglement generation process for the state (11.3) is shown in Figure

11.2. Further, all the parties are connected by classical channels amongst themselves.
The total system of seven qubits can be written as:
|F> = |N1>a® |N2>b ® |E>A1B1A2032

1
= (91[0) + 82[1))a ® (1/0) + ha[1))s ® 5(/00000) + [00111)
+ |11010> + ’11101>)A131A2032‘

(11.4)



For this communication process Alice and Bob both execute measurements with Bell basis

described as

T1)a, o8 = %uom +]11)),
Tobensjem, = %uom ~ 1)),
Tsbansjen, = %uon +]10)),
T abansjem, = %uow ~ |10)),

(11.5)

on their pairs of qubits (a, A;) and (b, B,), respectively, and finally, the controller Charlie

makes a von Neumann measurement on his qubit C on the basis given by

[G)e = —=(10) +[1)),

\/_

C2)c \/_ —=(10) = [1)).

(11.6)
Considering the basis discussed in Eq. (11.5) and the basis given by Eq. (11.6), the

composite state |I') in Eq. (11.4) can be written as (ignoring the constant factor)

IT) = (81]0) + 92[1))a ® (51]0) + b2|1))e ® (|00000>+!00111>
+[11010) + [11101)) 4,5, 4,c5,

4 2

M*‘

I
—

A

where |v;jk) B, 4, 's are given by



+ g2bal11
+ g2b2|11
— gabo|11
— g2h2|11
— gabo|11
— g2h2|11
+ g2b2|11
+ g2b2|11

|v111) B14, = 91H1|00) + g1h2|01) + g2h1]10
|v112) B1A, = 9101]/00) — g1h2|01) — gob1[10
|vi21) B4, = 91H1]/00) — g1h2|01) + g2h1[10
|v122) B4, = 91D1]00) 4 g1bH2|01) — g2b1[10

) )

) )

) )

) )

b
Y
)

|v211) B4, = 91H1|00) + g1h2|01) — g2h1]10

9

|v212) B4, = 81H1]00) — g1h2]01) + g2h1/10

-

|v221) B4, = 91H1|00) — g1h2|01) — goh1]10

b

~_ — — — — — T T
~ ~ ~— ~—— ~— ~— ~ ~——
-

)
)
)
)
)
)
)
|v222) B1a, = 91H1]00) + g1H2|01) + g2b1]10 ,
|v131) B4, = 9101]01) + g1h2(00) + gab1[11) + g2h2|10),
|v132) BiA, = —@1D1|01) + g1b2]00) + g2h1|11) — g2b2|10),
[v141) B4, = 9101]01) — g1h2|00) + g2h1[11) — g2b2[10),
|V142) BiA, = —91D1|01) — g1b2|00) + g2h1|11) + g2b2|10),
)B4, = 91h1/01) 4+ g152|00) — g2b1[11) — g2b2[10),
[v232) B4, = —08101]01) + g1b2(/00) — g2b1[11) + g2b2|10),
[v241) B,4, = 8101(01) — g152(00) — g2b1[11) + g2b2[10),
|v242) B, 4, = —01D1/01) — g1h2]00) — g2h1|11) — g2h2|10),
|v311) B4, = 91D1[10) + g1b2|11) + g2b1]00) + g2h2|01),
|v312) B, 4, = —81D1/10) + g1h2[11) + g2h1]00) — g2b2|01),
[Usa1) B4, = 8101/10) — g1h2|11) + g2h1|00) — g2h2|01),
|v322) BiA, = —91D1|10) — g1b2|11) + g2h1]|00) + g2b2|01),
[va11) B4, = 8101[10) + g1h2[11) — g251|00) — g2h2|01),
|v412) By A, = —91D1|10) + g1b2[11) — g2h1]|00) + g2b2|01),
|V421) Bi4, = 91D1[10) — g1b2|11) — g2b1]00) + g2h2|01),
)

[V422) B, A, = —01D1[10) — g1b2[11) — g2b1]|00) — gab2|01),
[U331) B4, = 9101[11) + g1b2|10) + g2b1|01) + g2h2]00),
[v332) B, 4, = 8101/11) — g1b2[10) — g2b1(|01) + g2h2(00),
[V341) B4, = 9101[11) — g1h2|10) + g2b1|01) — g2h2[00),
[U342) B4, = 91D1]11) + g1b2|10) — g2b1|01) — g2h2[00),
[V431) B4, = 9101[11) + g1b2|10) — g2b1|01) — g2h2]00),
[V432) B4, = 91D1[11) — g1h2|10) + g2b1|01) — g2h2[00),
|V441) By 4, = 9101[11) — g1b2[10) — gab1]01) + g2h2|00),
[V442) B4, = 9101[11) + g1b2|10) + gah1]01) + g2h2(00).

Now Alice and Bob make Bell basis measurements on their respective qubits. After the
completion of the measurements, Alice (Bob) sends her (his) measurement outcomes to

Bob (Alice) and Charlie through some classical channels. At this stage, Charlie plays an



important role for completion of the protocol. Before making a decision Charlie carefully
examines every concerned circumstances. If, even at the very last moment, Charlie
observes something wrong, he will stop the protocol by doing nothing! Otherwise, he
performs measurement on his single qubit C in the basis given in Eq. (11.6). After the
measurement, Charlie sends his outcome to Alice and Bob through classical channels. By
getting these information from Charlie, Alice and Bob make appropriate unitary operations
on their remaining qubits which are given in the following Table 11.1 and Table 11.2 and
thereby complete the exchange of qubit states. This is end of the protocol. The whole

scenario is depicted in Figure 11.1.

Table 11.1

Alice's and Bob's unitary operation conditioned on Bob's, Alice's
and Charlie's measurement results <

Alice's Bob's Charlie's Reduced Alice's unitary Bob's unitary
result result result state operation operation
T1) a4, 1T1)6B, [S¥2e] lvi)pa, (D4, (1),
T1)a4, 1T1)68, ¢2)e lvig)Bia,  (92)a, (9:) B,
T1)a, |T2)6m, [Ci)e lvi1)B,a,  (92)a, (1),
T1) a4, ITa)en,  [G2) lvize)Bia, (D)4, (9:),
1T2)aa, IT1)6B, I¢1)c |va11) By 4, (1) 4, (9:)B,
T2)aa, 1T1)6B, G2)o lva12)Bia,  (F2)a, (1),
1T2) a4, IT2)6B, I¢1)c |v221) B, 4, (92) 4, (92) B,
1T2) a4, |T2)em, IC2)c [va22) B, 4, (1) 4, (D) g,
1T1) a4, |T3) 08, IC1)e |v131) B, 4, (92) 4, (I)p,
1T1) a4, |T3)0B, IC2) ¢ |v132) By 4, (9.92) 4, (9:9.92) B,
T1)a4, |T4)oB, [Ci)e lvia1)Ba,  (9:92) 4, (I)B,
1T1) a4, |4)6B, 1¢2)c |v142) B, 4, (92) a, (929.9:) B,
1T2) a4, I3)68, IC1)c |v231) By 4, (92) 4, (92)B,
|T2)aa, |T3) 6B, IC2) e |v232) By 4, (9:92) 4, (9:9:9.9:) B,
T2)aa, 1T4)em, [G)e lvaar) Bia,  (9:02)4, (9:) B,
|T2)aa, |T4)6B, IC2) e |v242) B, 4, (Ve) 4, (9:9:9.9:) B,




Table 11.2

Continued: Alice's and Bob's unitary operation conditioned on

Bob's,

Alice's and Charlie's measurement results

Bob's unitary

Alice's unitary

Charlie's Reduced

Bob's

Alice's

operation

operation

result state

result

result

(791)31

(I)Az

|vusi1) B4,

I¢1)e

|T1)e,
|T1)e8,
|T2)e8,
|T2)e,
IT1)es,
|T1)6,
|T2)e,
|T2)es,
|T3)e8,
|T3)e8,
|T4)es,
|T4)6,

"r3>uA1

(19m19z)31
(191)31

(19z)Az

|vsi2) B 4,

¢2)c

‘T3>0A1

(ﬂZ)A‘z
() As

|vus21) By 4,

I¢1)e

|T3)an,

(ﬂz'ﬂz)Bl

|vs22) B, Ay

IC2)c

‘T3>U~A1

(19z19w)31

(1) 4,

|va11) By 4,

IC1)e

‘T4>C‘A1

(ﬂzvz'&z)Bl
(19#9:5)31

(192)142

|va12) By 4,

1C2)c

‘T4>GA1

(0Z)A2
(1) 4,

|va21) B, Ay

IC1)e

‘T4>ﬂA1

(ﬂz’&x'&z)Bl
(791)31

|’U422 > B A,

IC2)c

‘T4>GA1

(791)142

|vs31) B4,

I¢1)e

|T3)aa,

(19z19m)31
(191)31

(19z19w ) Ay

|vs32) By 4,

IC2)c

‘T3>UA1

(192792)142
(191)142

|Usa1) B, 4,

I¢1)e

|T3)an,

(ﬂz'ﬂz)Bl

|vUs42) By 4,

IC2) e

"r3>aA1

(191‘)142 (19#9%)31
(191)31

|va31) By 4,

IC1)e

|T3) 6B,
I3) 68,
|T4)oB,
|T4)es,

‘T4>0A1

(192'1995)[12

|U432>B1A2

IC2)c

‘T4>GA1

(19%9:&)31
(1950)31

(19%9:& ) Ay
(92) 4,

|va41) B, Ay

IC1)e

‘T4>HA1

|vaa2) B, 4,

IC2)c

‘T4>C‘A1
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Figure 11.1 Schematic diagram of controlled bi-directional single-qubit quantum teleportation process. <1
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Figure 11.2 Circuit diagram for generation of entangled state |E) given in Eq. (11.3). <

As an illustration, suppose Alice's, Bob's and Charlie's measurement outcomes are |1 4)q4,

, | T3)em, and |C2) ¢, respectively, then the state of the remaining qubits becomes

[V432) B4, = 91D1[11) — g1b2|10) + gabh1]01) — g2h2|00)
= (91/1) + 92/0)) B, ® (h1]1) — h2|0)) 4,

After receiving the classical information from the controller Charlie, Alice and Bob
perform appropriate unitary operations, which are from Table 11.2 respectively given by,
(9,9;) 4, and (I¥,) p,, on their respective qubits to recover the original quantum state. The

goal of the protocol is thereby achieved.

11.3 CYCLIC CONTROLLED TELEPORTATION PROTOCOL
AMONGST THREE PARTIES

We present here a cyclic teleportation process under a controller. The protocol has been
developed by Zhi-wen Sang [143]. Here, we consider a scheme where three parties Alice,
Bob and Charlie situated far apart from each other and each of them possesses an arbitrary
single-qubit state without knowing any information of the state. These states in the

possessions of Alice, Bob and Charlie are, respectively, given by

IN1)a = (91/0) + g2/1)),
N2)p = (51[0) + h2|1)),
IN3)c = (f1]0) + f2[1)),

(11.7)

where the coefficients g1, g2, b1, o, f1, f2 satisfy the normalization condition, that is,

912 + |g2]® = 1,
61]% + |o|?* =1,
F1]? + [F2]* = 1.

Now Alice wants to transfer her single-qubit state |X;), to Bob, Bob wants to transfer his
single-qubit state |Ns) to Charlie and Charlie wants to transfer his single-qubit state |Ns).

to Alice. There is another party, namely David, whose role in the scheme is of a controller



from beginning to end of the scheme and without his action the scheme cannot be
completed. To initiate the scheme, suppose that Alice, Bob, Charlie and David share a

seven-qubit entangled state, which is given by
1
|E) A4, 4,B,B,C,C,D = 7 (/0101010) + |0001111) 4 [0111001) + |0011100)
2v/2
+/1100011) + |1000110) + |1110000) + |1010101)),

(11.8)

Bob

Charlie

Alice

Figure 11.3 Schematic diagram for cyclic controlled teleportation protocol. <J

where Alice possesses the qubits (A1, A3), Bob possesses the qubits (Bj, By), Charlie
possesses the qubits (Cq,C2) and the qubit D belongs to the controller David. The
generation of quantum resource is shown in Figure 11.4. The state of the total quantum

system can be written as



|F> = |N1>ﬂ ® |N2>b ® |N3>C ® |E>A1A2BIB2CIC2D'

(11.9)
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Figure 11.4 Circuit diagram for generation of entangled state | E') given in Eq. (11.8). &

Further there are classical channels connecting all the four parties with one another.

In order to realize the quantum controlled cyclic teleportation, Alice applies a complete

Bell-basis measurement on her qubits (a, A;) which are given by

T2)es, = —=(00) + 1),
Males, = —=(00) - 1),
Cahes, = —=(01) + 10))
Tian, = —=(01) - [10).

Using this basis, the above combined state can be written as (ignoring the constant factor)



T)abed, 4,8,B,c:0,0 = (D1]0) + b2|1))e @ (F1]0) + F2|1))c
® lml)aAl ® {g1 (|101010> +1001111) + [111001) + \011100>)

+ g9 (|100011> +(000110) + [110000) + |010101>> }

+ | To)as, ® {gl (|101010> +(001111) + [111001) + |011100>)
— g5 (|100011> +1000110) + [110000) + \010101>> }

+[T3)as, ® {gl <|100011> +(000110) + [110000) + |010101>>
+gs (|101010> +]001111) + [111001) + \011100>)}

+ [ Ts)an, ® {gl <|100011> +1000110) + [110000) + |010101>>
— 8o (|101010> +(001111) + [111001) + |011100>) H

(11.10)

After the measurement of Alice, she publicly announces her measurement outcomes
through a 2-bit of classical message. Suppose Alice's measurement outcome is |Ys5)q4,,

then the state of the remaining qubits is reduced to the state

IT1)6ca,B,8,00:¢.0 = (h1|0) + b2|1))e ® (F1]0) + f2[1)).

® lgl (|101010> +001111) + |111001) + |011100>>

— g <y100011> +1000110) + [110000) + 1010101>>].

(11.11)

Subsequently, Bob performs a measurement on his own qubits (b, By) in the basis given
by

1 1
T1)em, = $(|00> +11),  |T2)us, = $(|00> — 1)),



T3)em, = —=(|01) + [10)),

1T4)eB, = (|01) — [10)).

S-S -

Using this basis the above reduced state |I'1)pc4,8,B,0,0,p can be written as (ignoring the

constant factor)

’F1>bcA2B1320102D = (f1|0 +f2’1
lm VB, {glf)l (/11010)+|01111))+g1hH2(]11001)4-{01100))
— gab1 |10011>+|00110>)—9252(|10000>+|00101>)}
+|T2)0m, ® 4 91h1(|11010)+[01111)) —g1h»(|11001)+|01100))

— gab1 |10011>+\00110>)+gzb2(|10000>+100101>)}

9161(|11001)+|01100)) —g1b5(|11010)+|01111))

(
°y
(
41 3)em, {glf)l 111001)+(01100)) +g1h2(|11010)+[01111))
(
T aen, {
(

— gah1 |10000}00101>)+gzh2(|10011>+|00110>)H

(11.12)

After the measurement of Bob, he publicly announces his measurement results through a
2-bit classical message. Suppose Bob's measurement outcome is | Y3)pp,, then the state of

the remaining qubits is reduced to the state

|F2>CA2B20102D = (f1|0> + f2|1>)c
® | g1h1(]11001) + [01100)) + g1h2(|11010) + [01111))

— g2h1(]10000) + [00101)) — gob2(|10011) 4 |00110))].



(11.13)
Thirdly, Charlie makes a Bell-basis measurement on his own qubits (¢, C) given by

_ L
~
Ta)ec, = %uow — 1)),

T1)cc, (|00) + [11)),

Ta)ec, = %uow + [10)),

1

V2

Using this basis the above reduced state |I's) 4,5,0,¢,p can be written as (ignoring the

T4)ec, (101) — [10)).

constant factor)

To)ca,mcneop = [T1)ec, ® [glhlf1|1101> + g1h1§2/0100) + g1b2f1[1110)
+ glb2f210111> — gzb1f1|1000> — 92h1f2|0001>

— g2h2f1/1011) — 92U2f2|0010>]

+[Ta)ec, ® [91b1f1|1101> — 9101f2/0100) + g1h2f1[1110)
— g1h2f2|0111) — g2h1f1/1000) + g2h1f2/0001)

— g2hof1/1011) + 92h2f2|0010>]

+1T3)cc, ® [glh1f2\1101> + g1h1§1]0100) + g1h2f2|1110)
+ g1h2f1/0111) — g2b1f2/1000) — g2b1f1/0001)

— g2h2f2|1011) — gzh2f1|001o>]

+ | Ta)ec, ® l—9151f2\1101> + 9161f1/0100) — g1hafa[1110)
+ g1h2f1/0111) + g2h1f2/1000) — g2b1f1/0001)

+ g2b2f2[1011) — gzh2f1|0010>] :

(11.14)



After the measurement of Charlie, he publicly announces his measurement outcomes
through a 2-bit classical message. Suppose that Charlie's measurement outcome is | Y1) .c;,

then the state of the remaining qubits is reduced to the state

I'3) 4,8,0,0 = 91b1f1/1101) + g1h12|0100) + g1h2f1|1110)
+ g1h2f2|0111) — gabh11/1000) — gah12|0001)
— g2h2f1/1011) — g2h2f2|0010).

(11.15)

Until now, the controller, David, has been inactive in the protocol. After receiving all the
classical information from all the remaining parties, he scrutinizes the overall scenario.
Once he is satisfied that everything is in order, only then he performs his measurement on
his single-qubit D and announces the result classically via 1-bit messages. If David
observes that something went wrong, he remains inactive by doing nothing, in which case

the protocol cannot be completed.

Otherwise, David executes a single-qubit measurement on the basis given by

(11.16)

Using the basis (11.16), the above reduced state |I's) 4,5,¢c,p can be written as (ignoring

the constant term)

Coamco =160 ® (0iF110) + 0010 + mbafi111) + grbefofo1L)
— g2b171/100) — g2h1f2/000) — gab2f1|101) — 92[)2f2|001>)
IS (—glmflmm £ 0101721010) + g1bsfi | 111) — g1Fo[011)
— g2b171/100) + g2h1f2/000) + gab2f1[101) — 92b2f2|001>)-

(11.17)



After completing the measurement, David announces his outcome via 1-bit classical
message. Suppose David's measurement result is |(1) p, then the state of remaining qubits

is reduced to the state
T4) 4,B,0, = (91f)1f1|110> + g161§2/010) + g1h2f1]111) + g1haf2|011)

— 92011/100) — g2b1f2|000) — gahaf1[101) — ng)zf2|001>)
= (f111) + §2/0)) 4, ® (91]1) — 82/0)) B, ® (h1]0) + b2|1))c,-
(11.18)

Lastly, Alice, Bob and Charlie perform local unitary operations (9,) 4,, (¢,9;) 5, and I,
on their respective qubits to reconstruct the intended state. Thereby cyclic controlled
teleportation is successfully realized. The protocol is described schematically in Figure
11.3. There are 128 number of possible cases in the protocol. Here, we illustrate only one

such case.



12 Multi-hop Teleportation Schemes
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12.1 INTRODUCTION

In this chapter, the multi-hop teleportation process is described in which there are
intermediate nodes between the sender and the receiver. Protocols with and without
controller are presented. These protocols with intermediate nodes are needed in cases of
long distance teleportation where the shared entangled resources become vulnerable to

environment disturbances.

So far in the previous chapters some direct communication protocols between the sender
and receiver with and without the help of the controller are discussed. Practical challenges
in implementing direct communication protocols across large distances are expected since
the quantum resource may be distorted due to the interaction with nature making it
unusable for teleportation. For that, intermediate nodes are introduced and the
teleportation protocols are executed across the nodes in series over relatively short
distances. The chances of being affected by noise are thus minimized. This is the concept
of hop-by-hop teleportation, which is actually a combination of a number of teleportation
processes performed sequentially. In this chapter, we discuss three different such
protocols. Multi-hop teleportation protocols have been treated in works like [20, 24, 25,
39,48,101, 121, 173, 186, 196, 200, 205, 206].

12.2 MULTI-HOP TELEPORTATION PROTOCOL OF ARBITRARY
SINGLE-QUBIT STATES

In this section, we discuss a protocol for transferring an arbitrary single-qubit state from a
sender Alice to a receiver Bob who are situated far apart and are not directly connected by

any kind of entangled resource. We considered the same problem of state transfer in


https://doi.org/10.1201/9781003561439-12

Chapter 8 where the two parties were directly sharing a quantum resource. Here the
problem of communication is approached by introducing intermediate nodes between the
sender and the receiver. The scheme presented in this section is developed by Wang et al.
[165].

One-hop quantum teleportation

This is the same as ordinary teleportation. Suppose that Alice wants to transmit an
arbitrary single-qubit quantum state |N), described in Eq. (8.1) to a distant receiver Bob.
Also, suppose that the two parties shares a two-qubit maximally entangled Bell state in the
form of Eq. (8.2). We recall briefly in the following the teleportation protocol described in
Section 8.2.

The composite state of the whole system is described in Eq. (8.3). Using the four Bell
states {|Y1),|Y2),|Ys),|L4)} given in Eq. (8.4), the above composite state can be

written as

) = %HTl)aA ® (91/0) + 92[1)) B + [T2)aa ® (91[0) — 92|1))
+[T3)aa ® (81]1) + 82/0)) 5 + |Ta)an ® (92]1) — 92(0)) 5]

4
= > IT)aa®vi)B
i=1
4
= ) [Ti)aa ® (U; Y1) B)
=1

(12.1)

where |v;) 's are the reduced state and U,'s are the recovery operators, all of which are

given in Table 8.1.

Now Alice executes on her two qubits using the Bell bases and transmits the outcome
through a classical channel to Bob. Accordingly, Bob acts by performing the

corresponding unitary operation to recover the original quantum state.
Two-hop quantum teleportation

In this case, we assume that the sender Alice wants to send the quantum state given in Eq.

(8.1) to Bob, but initially there is no shared entangled quantum resource between them. In



this situation, quantum communication is feasible in the multi-hop way, where entangled
swapping is used to distribute the entangled qubits to the sender as well as receiver. For
two-hop cases, there is an intermediate node, say X;, which can share one Bell pair with
Alice and another with Bob. When the intermediate node X; makes a measurement on the
two qubits and transmits the outcome to Alice and Bob, the remaining qubits at the sites
of Alice and Bob get entangled. In this way, a quantum channel is created between the
sender and receiver. We assume that the sender Alice and the receiver Bob share the
entangled state |Y;) = 1001 with the intermediate node X | separately.

V2

The receiver Bob is connected to Alice and X; through a classical communication

channel.

The total state of the system can be written as
N)a ®[Y1)ax: @ [T1) x28

1
(100) + [11)) ax: ® | Y1) x28

= (91/0) +92[1))a ® 7

4
= Z Ti)aa ® (U Hor) x1) ® [T1) x2p

im1
4 4

= D IT)aa® Y | xixe ® (U; U ur) )
i=1 J=1

(12.2)

where U/'s are unitary operations given in Table 8.1 and |Y;), are the Bell states described

in Section 8 in Eq. 8.4.

Now Alice and the intermediate node X; execute measurements on their respective two
qubits using Bell bases and transmit the measurement result to Bob via classical channels.
Depending on the measurement results, Bob performs a unitary operation U;U; to recover

the intended state. That is the end of the two-hop teleportation protocol.

As an illustration, suppose that the measurement results of Alice and the party X, are

T4)aa and |Y9) x1x2, respectively. Then the reduced state becomes
171 p

U, U, 1) g = 9:9,9.(91]0) + g2[1)) B = (—g1/1) — g2/0)) 5.



Finally, after receiving the classical information from Alice and the party X;, Bob
accordingly acts by performing a unitary operation which is UyUy = 9,9, on his qubit

to recover the original quantum state.
N -hop quantum teleportation

Now, the above two cases (one-hop and two-hop) can be generalized to N-hop quantum
teleportation where we assume in between Alice (source node) and Bob (destination
node), (N — 1) intermediate nodes are present. There is no direct quantum entanglement
between Alice and Bob, whereas each of consecutive pairs of parties are entangled
through a sharing of the Bell state | ;) = 100)+11)

G We denote the intermediate nodes by
Xla X2a X3v R vXNfl-

Further, Alice and all the intermediate nodes X, X5, X3,..., Xy_1 are connected to Bob

by classical communication channels.

Classical Channel

—

Alice X1 Xz . .- Xn-1 Bob
Source Node Intermediate Nodes Destination Node

Figure 12.1 Multi-hop teleportation protocol for transferring single-qubit state.

The composite state of the whole system can be written as



N a® [T1)ax: ®[T1)x2x1®...®|T1)x2 B

1
= (91/0) + g2/1))a ® $(|00> +11) ax: ® [T1) x2x:®- - ®|T1)x2 5

Ti)aa ® (U; o) x1) ® [T1) x2x1®- .- @ T1) x3

M- 11

I
—_

4
Ti)as ® 2 1)) xix2 ® (U7 U o) x1)®- . | T1) x2 5
]:

7

4 4 4
= D TDaa®D I Tixixee®-- 0> | Ti)xy xz, @ (Ut U U oa) p).
=1 k=1

=1

(12.3)

Now Alice and all intermediate nodes X, Xo,...,Xy_1 make measurement on their
respective two qubits using Bell bases and transmit the measurement result to Bob
independently via the classical channels. Depending on the measurement results, Bob
performs a unitary operation U;U; - - - Uy, to recover the original quantum state by which
the teleportation is successfully achieved. That is the end of the N-hop teleportation
protocol.

12.3 MULTI-HOP TELEPORTATION PROTOCOL OF ARBITRARY
TWO-QUBIT STATES

Let us assume that the sender Alice wants to transmit an unknown general two-qubit
quantum state to Bob, who is situated far away from Alice. This problem is already
discussed in Section 9.1, where the task of state transfer is accomplished through a
teleportation protocol in which the sender and the receiver share an entangled resource. In
our consideration it is a one-hop case which we briefly describe. The multi-hop protocol
for the above problem is developed by Zou et al. [206]

One-hop quantum teleportation
We refer to the protocol presented in Section 9.1. Here the two parties share the entangled

state

1
(G1) 414,88, = 5 (10000) + [0101) + [1010) + [1111))



For simplicity the total system (Eq. 9.7) can be written as

1 16
‘F> = Z Z |Gj>ﬂlﬂ2A1A2 ® |Uj>BlB2
=1
16
- Z ‘Gj>a1a2A1A2 ® (Uj_llvl>3132)a
=1

(12.4)

where |v;) 's are the reduced state and U/'s are the recovery operators, all of which are

given in Table 9.1.

Now Alice executes measurement on her four qubits using the basis given in Egs. (9.2)--
(9.5) and transmits her measurement results through a classical channel to Bob. Finally,

Bob applies the corresponding unitary operation to recover the original quantum state.
Two-hop quantum teleportation

In this situation there is no direct quantum entanglement between the source party and
destination party, rather an intermediate party, say JX;, is introduced who shares
entanglement with the two parties. Let us assume an entangled state
|G1) = $(|0000) +[0101) 4 [1010) + |1111)), as described in Eq. (9.2), is shared
between the intermediate node X; and the sender Alice and also between X; and the
receiver Bob. Also both Alice and X are connected to Bob by classical communication

channels.

Therefore, the total quantum system can be written as



N)a1a, ® |G1) 4,4,x1x2 ® |G1) x3x18,B,
= (91/00) + g2(01) + g3[10) + g4[11))q;a,

1
® 5(|0000> +(0101) 4 [1010) + [1111)) 4, 4, x1x2 ® |G1) x3 x4, B,
1 16

= Z Z |Gj>a1a2A1A2 ® |'Uj>X11Xf ® |G1>X13X{1B1B2
=1

16

= Z G ) arari 4, ® (Uj_l|v1>X11X12) ® |G1) xix18,B,
=1

16 16
-1
= |Gj>a1a2A1A2 ® Z |Gk>X11X12Xfo ® (Uk Uj |U1>B1B2)
=1 k=1

J

(12.5)

where |G) s are described in Eqgs. (9.2)+9.5) and U; s are given in Table 9.1.

Now both parties, sender Alice and intermediate node X;, make measurements on their
respective qubits on the basis given in Egs. (9.2)--(9.5) and send the measurement results
to Bob with the help of a 4 bit classical channel. After receiving the measurement result,
Bob performs a unitary operation to recover the original state. If Alice's measurement
result is |G;) and the measurement result of X| is |G), then the unitary operation to be

applied by Bob is U;Uy. That is the end of the two-hop teleportation protocol.

Classical channel

Alice X1 X2 a a a Xn1 Bob



Figure 12.2 Multi-hop teleportation protocol for 2-qubit state.

As an illustration, suppose Bob receives the measurement results |G7)q,a,4,4, and
|G3) x1x2xixs from Alice and the intermediate party X}, respectively. The reduced state of

the remaining qubits becomes

(—91/01) — 2/00) — g3[11) — g4/10)) 5, 5,-
Then Bob applies a unitary operation U;Us = (9,9,1,) , to obtain the intended state.
N -hop quantum teleportation

Now, the above two cases (one-hop and two-hop) can be generalized to N-hop quantum
teleportation where we assume in between Alice (source node) and Bob (destination
node), (IV — 1) intermediate nodes are present. There is no direct quantum entanglement
between Alice and Bob, whereas each of consecutive pairs of nodes are entangled. We

assume that the intermediate nodes are X1, X9, X3,..., Xn_1.

The sender Alice and all the intermediate nodes X1, X9, X3,..., Xy_1 are individually

connected to Bob through classical communication channels.
The composite state of the whole system can be written as
R ara, ® [G1) 4, 4,x1x2 @ |G1) x3x1x1x2®- - ®|G1) x3_ xt BB,
1
= (1/00) + g2[01) + g3[10) + g4[11))a,a, ® - (|0000) +|0101) + [1010)

+ [1111)) 4,4, x1x2 ® [G1) x3x1x1x:®- - - ®G1) x3 x4 BB,

16
-1
= 2 Gj)araraia, ® (U |v1) xix2) ® [G1) xoxixix:®- .- ®|G1)x3. x4 BB,
]:
16 16
11
= 2 'Gj>a1ﬂ2A1A2 ® kz; |Gk>X11X12Xfo ® (Uk lUj ‘U1>X21X22)®- . ®|G1>X§’V71X}V713132
]: —
16 16 16
= 2 G arardia, ® kz; Gr) xixexixt ® -+ ® lz; G xi x2 x3 xt
J= — =

® (U - U U o) Bysy)-

(12.6)



Now, all the intermediate parties X, Xs,...,Xn_1 and the sender Alice perform
measurements on their respective four qubits using the basis given in Eq. (9.2)—(9.5) and
transmit the measurement results to Bob independently through classical channels. After
receiving the results of the measurement, Bob finally executes a unitary operation
U;Ui---U; to recover the intended quantum state and that is the end of the N-hop

teleportation protocol.

12.4 MULTI-HOP CONTROLLED TELEPORTATION PROTOCOL OF
ARBITRARY SINGLE-QUBIT STATE

In this section the problem is that of transfer of a single qubit state to a distant party under
the supervision of a controller. It is performed by introducing intermediate nodes in order
to avoid the effect of long distances on entangled connections. The protocol is designed by
Peng et al. [121].

One-hop Quantum Controlled Teleportation

There are two nodes; Alice is the source node whereas Bob is the destination node, and
Candy is the controller. The sender (Alice) intends to transmit a single-qubit state to the

receiver (Bob) which is given by

N)a = (91]0) + g2/1)).

(12.7)
Here, the parameters g; and go meet the normalization condition, that is,
l91/” + lg2|” = 1.
There is a 3-qubit quantum resource connecting Alice, Bob and Candy given by
IB) anc = ——(|000) + cosk[110) + sink|111)),
V2
(12.8)

where qubits 4,B,C are held by Alice, Bob and Candy, respectively. The corresponding
circuit diagram for its generation is given in Figure 12.3, where R, (k) is described by the

matrix



cos% —sini>

sin  cos®

A |0) H .

B |0) GL/ L

C |0) - Ry(—x) a5 Ry(x) ——

Figure 12.3 Circuit diagram for the generation of quantum resource given in Eq. (12.8). &

The composite system is given by
L) = [N)a ®|E)anc

1
= (g1/0) + g2|1))a ® —2(|000> + cosk|110) + sink|111)) apc.

7
(12.9)

To complete the process, Alice first performs measurements on her qubits a and 4 on the
Bell basis (vide Eq. (8.4)). After the measurement, she sends the measurement outcomes
to Bob and Candy through classical channels. After receiving the classical information,
Candy makes a single-qubit rotation on his qubit C and then executes a projective
measurement on the same qubit C and transmits the results to the receiver Bob.
Depending on the classical information from Alice and Candy, an appropriate unitary
operation is implemented to recover the intended quantum state. These operations are

summarized in Table 12.1. That is the end of the protocol.

Table 12.1

Possible local unitary operation performed
by Bob in one-hop controlled teleportation
according to the measurement outcomes of
Alice and Candy J

Alice's Candy's State at Bob's Bob's unitary

results results site operation

IT1)aa 0)c (8110) +92(1)) (I)B



Alice's Candy's State at Bob's Bob's unitary

results results site operation

T1)aa e (010) —g2[1))p  (92)B

1T2)aa 0)c (9110) —g2[1))p  (9.)m

T2)aa Ve (01/0) + 02[1))5 (D)

T3)an 0)¢ (01/1) +02[0))5  (¥2)B

1T3)aa e (91]1) —92[0))p  (9.9.)p
1T4)aa 0)c (91/1) = 9210)) 5 (9.9:)5
1T4)an e (9111) + 92[0)) 5 (¥2)B

We illustrate the whole process in the following way.

The entire quantum system (12.9) can be written using the Bell basis
{|T1>7|T2>7|T3>7|T4>}as

1 .
=3 [ T1)aa ® (g1]00) + gacosk|10) + gasink|11)) po

+|T2)qa ® (91]00) — gacosk|10) — gasink|11))pe
+|T3)qa ® (g1c08K|10) + g1sink|11) + g2]00)) pc
+|T4)aa ® (g1c08K|10) + g1sink|11) — g2|00>)30}.

(12.10)

After measuring qubits (a, A), Alice gets the outcomes | Y1) 44 or |Y2),4 with probability

12 + |g2|%cos®k + |ga|?sin’k 1

|91
2[(lg1]? + |g2|2cos?k + |ga|2sin?k) + (|g1|%cos?k + [ga|? + |g1]2sink)] 4

(12.11)

and |Y3)q4 or |Y4)aa with probability

12sin’k 1

l91%cos?k + |g2|” + |01 1
2[(|g1|% + |g2|2cos®k + |g2|2sin2k) + (|g1|%cos®k + |g2|? + |g1|2sin?k)] 4~

(12.12)

Suppose that the measurement outcome of Alice's measurement is |Y2) 44, then the state

of the remaining qubits becomes



(g1/00) — gacosk|10) — gosink|11)) pe.
(12.13)

Upon accepting Alice's classical message, the controller, Candy, applies the rotation

operator R,(—&) on his particle C.

Now,
cos< sinZ
R0 = (02, T,
—sing cosy
and hence,
R,(—#)[0) cos sin% 1
y\ R - —8in cos% 0

= cosg|0> — sing|1>,

(12.14)
cosL sink 0
R(—k)1) = 2 2
y(=R)ID) (—sin% cos%) (1)
B sin%
N cos%
k(1 k (0
= sm2 0 +c032 1
= sing|0> + cos%]l),
(12.15)

Using the Egs. (12.14)-(12.15), the state (12.13) can be expressed as



Ry(—~)(91]00) — gacosk|10) — gasink|11)) .,

— 2 K . K K
= Ry(—£)(91/00) — g2(2cos 5~ 1)]10) — 2g2sm§c085|11>)30

K . K K . K

= (glcosa |00) — glsm5|01> - gzcos§|10> - g2sm§|11>)BC
K . K

= cos5 (81/0) — 92[1)) 5[0)c — sin (91/0) + g2[1))B[1)c-

(12.16)

Candy then performs measurement on his particle C on the computational basis {|0), |1)}

and communicates the outcome to Bob through a classical channel.

If the outcome is |0)¢, which occurs with probability cos?(k/2), the state of particle
becomes (g1|0) — g2/1))p. The joint probability for this outcome (including Alice's
result) is %cosz(n/ 2). Based on the measurement results from Alice and Candy, Bob

applies a unitary operation J, to his particle to recover the intended state |X).

If the result is |1)¢, which occurs with probability sin?(x/2), the state of the particle

becomes (g1|0) + g2|1)) g. The joint probability for this result (including Alice's result) is
1
4
identity operation (/) to his particle to recover the intended state |X).

sin?(x/2). Based on the measurement results from Alice and Candy, Bob applies

Since Bob can always recover the target state using a suitable unitary operation in all
possible scenarios, this controlled teleportation scheme is perfect. The total success
probability is
4 x l X [cosz(ﬁ) + sin2(£)} =1
4 2 2 '

The one-hop teleportation is thereby achieved in the case where the measurement of Alice

yields |Y2)q4. The other three cases are similar to the above.
Two-hop controlled teleportation

In this scenario, Alice serves as the source (sender) node, Bob as the destination node,
with X, functioning as the intermediate node. Candy and David act as controllers at the
intermediate and destination nodes, respectively. Alice intends to transmit the quantum
state |N), as defined in Eq. (12.7) to Bob. However, there is no direct quantum channel

between the source (Alice) and the destination (Bob). Instead, two quantum resources are



available: one shared between Alice and the intermediate node X; and another between X;

and Bob, which are as in the following.

IB) ixre = ——(|000) + cosk|110) + sink|111)),
i V2
1
2

Based on the outcome of the one-hop controlled teleportation, the qubit X| at the
intermediate node X; can be reduced to one of the four possible states: (g1|0) = g2[1)) x;
or (g1|1) & g2/0)) x:. Suppose the state (g1|1) — g2|0)) x: is obtained at node X, after the

first controlled teleportation, then the resulting system state can be expressed as
1
IT1) = (g1]1) — 92/0)) x1 ® E(|000> + cosk[110) + sink|111)) x2pp-

(12.17)
Using the Bell basis, the above system state can be rewritten as
1
V2
= %UTQX}X%’ ® (g1cosk|10) + g1sink|11) — go|00)

P2 = (91]1) — 9210))x; ® —=(000) + cos|110) + sins[111)) x3p

~—

BD
— |T2>X11X12 ® (glcosm|10> -+ glsinkc|11> + 92|00> BD
+|T3) x1x2 ® (91]00) — g2cosk|10) — gasink|11)

— |T4) x1x2 ® (91/00) + gacosk[10) + gasink|11)

BD

S— N N

BD}-
(12.18)

Following a similar approach as in the one-hop controlled teleportation, one of the four
possible states- (g1]0) & g2|1)) g or (g1]|1) &= g2|0)) B -is obtained at the destination node

Bob, with the assistance of the controller David.

Bob can always recover the target state |R) by applying a suitable unitary operation on the
particle B. The other three possible cases of the state relating to the qubit X is similarly
treated. In this way Bob obtains the intended state with certainty.

Multi-hop controlled teleportation



By extending the idea of 2-hop controlled teleportation, it is possible to induct (N — 1)
intermediate nodes X, Xo,...,Xxy_1 between Alice and Bob and also controllers
corresponding to each node where a quantum resource described in Eq. (12.8) is shared by
the consecutive nodes including Alice and the controller. The steps in the 2-hop case can
be repeated at each of the intermediate nodes with the classical information obtained from
Alice and the intermediate nodes, the protocol can be completed by Bob through an
application of appropriate unitary operation.



13 Probabilistic Teleportation
Protocols
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13.1 INTRODUCTION

The protocols presented in this chapter are probabilistic teleportation protocols in

which there are cases of failures with certain probabilities. Probabilistic teleportation

118, 135, 168, 169, 180]. Generally the quantum resources used in these protocols are

not maximally entangled. This is one explanation for the probabilistic nature of these
protocols. The justification of studying these protocols is that the generation and
preservation of resources for these protocols are less difficult compared to that of those
where maximally entangled states are used. Also, there is a class of resumable
protocols in which the probabilistic teleportation process can be repeated in the case
where the attempt fails in the first place [21, 52, 104, 105].

13.2 PROBABILISTIC TELEPORTATION PROTOCOL OF
ARBITRARY SINGLE-QUBIT STATE

Assume that Alice possesses an unknown single-qubit quantum state given by
[®)a = (91/0) + g2[1))
(13.1)

with normalization condition |g;|* + |g2|? = 1 that she wants to transmit to the distant

receiver Bob.


https://doi.org/10.1201/9781003561439-13

There is a classical communication channel between Alice and Bob.

A pure entangled quantum state is shared between the parties which acts as a quantum

channel given by

1

|E>AB e ——
V1 [m]?

(100) +m|11)),

(13.2)

where m is a known complex number. The qubits ‘4’ and ‘B’ are with Alice and Bob,

respectively.

The circuit diagram for generation of (13.2) is shown in Figure 13.1, where U is

given by

1 . m
l V1+[m[? V1+|mf?
U - \ m 1

V/14|m2 V/1+]m[?

A0y —U

/-

B |0) D

Figure 13.1 Circuit diagram for the generation of non-maximally entangled state given in Eq. (13.2). &

The aforesaid task of state transfer using the above resource is done probabilistically
with certain success probability by the following teleportation process designed by

Agrawal et al. [1].
The total system can be written as
IT) = [R)a @ |E) ap-
(13.3)

Alice first makes a measurement on her qubits (a, A). If Alice performs measurement

in the Bell basis given in Eq. (8.4), then the teleportation process cannot be completed



with unit fidelity and unit probability. However, if the measurement is performed in a
non-maximally entangled Bell basis then it is possible for Alice to transfer the state

IN), with unit fidelity, though not with unit probability.

For this Alice uses a set of non-maximally entangled orthogonal Bell-states as basis
states which are given by

_ 1
61)a = —==(100) + p[11)),

[562)an = —=—(p*]00) — [11)),

_ 1
|%3>aA = NGeErE (|O]-> + q|10>)7

_ 1 *
|%4>aA - TP (q ’01> - |10>)7

(13.4)

where p and g are complex numbers. When p = q = 0, the above basis reduces to the
computational basis which is not entangled, and when p = q = 1, it reduces to the
maximally entangled Bell basis.

We have the following relations.

(13.5)

Using the above relations the total system can be rewritten in the following form:



L) =R)a®|E)ap

M(g1/0) + g2/1))a ® (|00) +m[11)) 45

M (g1/00)04[0) 5 + g1m[01)04|1) 5 + 92[10)04/0) 5 + gom|11)a4(1) B)
=M

[m " (Pgl|o> | Pmgap* |1>)B T e2)en (Ppgl|0> - ngz|1>)3

+ |2¢3) a4 (ngq 0) + Q91m|1>>3 + |2¢4)as <—Q92|0> + lemCI|1>>B]-

(13.6)

Here, M = , P = 1
e E = VinE Q= e

performs a measurement on the basis given in Eq. (13.4) and communicates this result

are real numbers. After that Alice

to Bob by a classical channel.

In general, this classical information will be of no use for Bob in obtaining the state

intended for teleportation with the exception of the following cases.

Casel: Ifp = =q* = m, that is, the parameters m, p, q are complex numbers

with unit modulus and are related as above, then it is possible for Bob to apply

appropriate unitary operations on his qubit to produce the state |R), at his end.

Following the above relations we have [p|? = pp* = 1,|q|?> = qq* = 1 which implies
that P = Q = Puttlng in (13.6) and rewriting we have

n- [mm (920 + g2/1) ) + o) 10) ~ el )

+ m|3c5)an (92|0> + 91|1>)B + [24)an <—92|0> + 91|1>> B:| :

(13.7)

Now Alice executes her measurement with the basis given in Eq. (13.4) and sends the
results to Bob through a classical channel. Depending on the outcomes of Alice, Bob
applies the corresponding appropriate unitary operation to obtain the intended state.
Details of unitary operations and reduced states obtained by Bob are given in Table
13.1.




Table 13.1

State at Bob's location and corresponding unitary
operations for Bob conditioned on Alice's results <1

Alice's outcome State of Bob's site unitary operation
|%€1)aa (91/0) + g2/1)) B (I)B
|2¢2) a4 (91/0) — g2[1))B (9:)5
|>¢3) aa (92/0) + 91]1))B (9z)B
|2¢4) aa (—=92(0) + g1|1)) B (9:92)B
. : — _ _ 1 _ 1 _ 1
Case II: [f we considerp =m =qg*,orp =m = e or p* =q,orp*=--= ro

, then the teleportation of the state |N), is possible only in two cases of measurement

outcomes, that is,

(1) if the condition p = m = q* holds, then teleportation is possible only when
Alice obtains the measurement result |se2)q4 and |sc3)44. This is immediate from the

expression (13.6). The other three case also described below follow similarly.

(i1) if the condition p =m = % holds, then teleportation is possible only when

Alice obtains the measurement result |s5) 44 and |3¢4) g4.

(i11) if the condition p* = % = q holds, then teleportation is possible only when

Alice obtains the measurement result |3¢1) 44 and |3¢4) 4.

(iv) if the condition p* = % = qL holds, then teleportation is possible only when

>aA and |%3>aA.

The process fails in the other two cases of measurement outcomes in each condition. It
also follows from Eq. (13.6) that the total probability of success corresponding to each

condition is

2|m|*

P
(1+ [m[?)?

It follows from the above that in order to perform probabilistic teleportation the

knowledge of the entanglement resource is necessary on the part of the sender Alice in



the choice of her basis of measurement while the receiver Bob need not have to possess

such information.

13.3 PROBABILISTIC TELEPORTATION PROTOCOL OF AN
UNKNOWN TWO-QUBIT STATE

In this section, it is shown that an unknown two-qubit quantum state can be transferred
from one party to another party with certain probability by the use of two Bell state
measurements, a POVM measurement and an appropriate unitary operation. A 4-qubit
entanglement resource is utilized in the protocol which is not maximally entangled. The

protocol has been designed by Yan et al. [41].

Suppose that two parties, namely Alice and Bob, are situated at distant places. Alice
plays the role of a sender and Bob is the receiver. Alice wants to transport her two qubit

quantum state given by
[R)a,0, = (91]00) + g2(01) + g3[10) + g4[11)),
(13.8)

to the receiver Bob where the coefficients g1, go, g3, g4 satisfy normalization condition,
that is,

9112 + |g2|* + |g3]® + 94| = 1.

For this purpose a four qubit entangled state, shared between the parties and generally

not maximally entangled, is used as quantum resource which is given as

|E) A,4,B,8, = (£/0000) + y|1001) + 2/0110) + w|1111)),

(13.9)

where the coefficients are non-zero real numbers and meet the normalization condition,
that is, £> + y? + 22 + w? = 1. The qubits 4, and 4,, and qubit pair (a;,as) are in
Alice's possession, and other two qubits B; and B, are in Bob's possession. The circuit

for the generation of (13.9) is given in Figure 13.2 where the operator U is described as



o O O
o O
\n_

c

I
o o o
© o n ©

Al 0>—H ®

Ay |0) — H
B |0)
B; |0) D

Figure 13.2 Circuit diagram for the generation of the non-maximally entangled resource given in Eq. (13.9). &

S

Also the two parties are connected amongst themselves by a classical communication
channel.

The composite system of six qubits is given by

IT) = [¥) a0, ® |E) 4,4,B,B,-

(13.10)
The above state can be written as
4 4
|F> - Z |Ti>aa1A2 ® |T1>a2A1 & |R1i>B1B2 + Z |Ti>a1A2 ® |T2>a2A1 ® |R2i>BlB2
i=1 i=1

4
+ Z |Ti>a1A2 ® ‘T3>G2A1 ® |R3i>B1Bz + Z |Ti>61A2 ® |T4>G2A1 ® |R4i>B1Bz
=1 =1

(13.11)

where



|R11>BlB2
|R12>BlB2
’R13>3132

|R14) B, B,

|R21) B, B,
|R22) B, B,
|R23>BlB2

|R24) B, B,

|R31>BlB2
|R32>BIB2
|R33) B,B,

|R34) B, B,

|R41>BIB2
|Ra2) B, B,
|R43) B, B,

|Ru4) B, B,

(z91]00) + yg2|01) + 2g3[10) + wg4|11)),
(g1|00) 4 yg2|01) — 2g3[10) — wg4|11)),
(291[10) + wgo|11) + 2g3]00) + yg4|01)),

(291/10) + wg2|11) — xg3|00) — yg4|01)),

(CTIEN OIS O O

%(mgl|00> — yg2|01) + 295|10) — wg4|11)),
%(wg1|00> — yg2|01) — 2g3]|10) + wgy|11)),
%(zgl|1o> — wgs|11) + 2g3]00) — yga|01)),
%(zgl|1o> — wgs|11) — 2gs|00) + yga|01)),

1
5(y91|01> + 2g2]|00) + wgs|11) + 2g4|10)),
1
5(y91|01> + 2g2]00) — wgs|11) — 2g4/10)),
1
5 (wg1[11) + 202[10) + yg3[01) + 244/00)),

1
§(w91|11> + 292/10) — yg3|01) — 2g4/00)),

1
5(3/91|01> — g2(|00) + wgs|11) — 2g4/10)),
1
§(y91|01> — xg2|00) — wgs|11) + 294/10)),
1
5(w91|11> — 292|10) + yg3|01) — 2g4/00)),

1
5(w91|11> — 292|10) — yg3|01) + 2g4/00)).

(13.12)

(13.13)

(13.14)



(13.15)

To complete the teleportation processes, Alice first executes two Bell basis

measurements on her qubit pairs (a2, A1) and (a1, A2) given by

e ay - (00 11D)
a,A1)/(a1,A42 \/5 ’
(100) —[11))

|T2>(a2,A1)/(a1,A2) = \/5 ,
O (. Ea 1)

as,A1)/(a1,A42 \/5 )
(]01) —[10))

T4 (02,41)/ (a1, 42) = :

V2
(13.16)

Suppose the outcomes of the Alice's measurement are |Yq),, 4, and |Y1),,4,, then
Bob's qubits By, B, are in the state

(g1|00) + yga|01) + 2g3|10) + wg4|11))
\/\3391’2 + |yga|? + |2g3]% + |wgs|?

!
|R11>BlBg =

(13.17)

After the measurements, Alice sends her outcomes to Bob with the help of a 4-bit
classical channel. After receiving the classical messages from Alice, Bob introduces
two auxiliary qubits g1, g2 with the initial state |0)4, |0)4,. Then the state of Bob's qubits

becomes

(g1/0000) + yg2|0100) + 2g3|1000) + wg4|1100)) B, B,g.q,
V]ze1|? + |yg2|? + [293]% + |wga|?

’R11>BlB2 |00>Q1Q2 =

(13.18)

Now Bob executes two CNOT operations on his qubits with B;, By as control qubits
and q1, g2 as the corresponding target qubits. After completion of this operation, the

above state of the qubits becomes the following.



|R11> $91|0000> + ’ygz|0101> + Zg3|1010> + wg4|1111>)3132q1q2,

B1B2qigs — N(

(13.19)
where N = +/|zg1( + |yga|? + |z03]2 + |wg/?.
We can rewrite the above state as
1
|R11) B, Bygrgs = W[ (91/00) + g2/01) + g3|10) + g4[11)) B, 5,
® (z[00) + y|01) + 2[10) + w[11))g,q,
+ (91]00) + g2|01) — g3/10) — g4/11)) B, B,
® (z[00) + y|01) — 2]10) — w[11))g,q,
+ (91/00) — g2[01) + g3|10) — g4[11)) B, B,
® (2]00) — y[01) + 2|10) — w|11))qyq,
+ (g1/00) — g2/01) — g3/10) + g4/11)) 5,5,
® (2|00) — y|01) — 2[10) + w[11))g,q,]-
(13.20)
Now Bob executes on his auxiliary qubits g1, g with a POVM given by
1 )
F5 =] — (F1+F2+F3+F4),
(13.21)

where



1 1 1 1
= M(—100 —101 — 10 —11
1) = M(100) + —Jo1) + 110 + —|11))

1 1 1 1
= M(—|00 —|01) — —]10) — — |11
o) = M(-[00) + —[01) — ~[10) ~ —[11)),
1 1 1 1
= M(—|00) — —|01 —|10) — —|11
Xs) = M(-[00) — —[01) + ~[10) ~ —[11)),
1 1 1 1
xa) = M(100) — —[01) — —[10) + —[11)),
T Y z w
1

)

1 1 1 1
Tyt T

(13.22)

and / is an identity operator, n is a coefficient related with the coefficients x,y,z,w such
that 1 < n < 4, and makes F'5 into a positive operator. For simplicity of the calculation,

we can write the above five operators I, Fs, F3, Fy, F5 in the matrix form respectively

as
l 4 1 1 1 \ I 1 1 1 _ 1 \
2 Ty Tz Tw x2 Ty Tz Tw
1 1 1 1 1 1 1 1
2| £+ 4 L L 2| L e ——
F — vy oyt Yz yw B — M ry Y2 yz yw
SRR Y S UG UG SRS U L N IS U U BN U
Tz Yz 22 Zw Tz yz 22 Zw
401 1 1 _1 1 1 1
TW yw zZw 2 TwW yw Zw w?
l 1 -1 1 _ 1 \ l 1 1 11 \
z?2 Ty Tz TWw x2 Ty Tz W
1 1 1 1 1 1 1 1
N "w v v ow M| " ¥ w w
F Ty Yy Yz yw F Ty Y Yz yw
L S U U S S S S N O S O
zz yz 22 Zw Tz yz 22 Zw
- 1 _1 1 1 1 11
Tw yw Zw w? Tw yw Zw w?

where



(13.23)

If Bob's POVM outcome is F7, then he obtains the original state which Alice wanted to

transfer, that is,
X) .5, = (91/00) + g2[01) + g3[10) + g411)).

If Bob's POVM outcome is F,, then he gets the original state |X) g, g, by performing the
appropriate unitary operation o, ® I on the qubits By, Bs.

If Bob's POVM outcome is F;, then he recovers the original state |N)p,p, by
performing the appropriate unitary operation I ® o, on the qubits By, Bs.

If Bob's POVM outcome is F, then he obtains the original state |X) g, , by performing
the appropriate unitary operation o, ® o, on the qubits Bj, Bs.

In all the above four cases mentioned above, we see that the teleportation processes is
successfully realized. However, if Bob's measurement result is Fs, he gets no
information about the state of the qubits By, Bs. In this case, the teleportation process
fails.

The other cases arising out of Alice's measurement are similarly treated.

In all cases we see that there are possibilities of failure of the protocol. Thus the state

can be transferred only with partial success.

13.4 PROBABILISTIC RESUMABLE TELEPORTATION SCHEME



In this section we discuss a probabilistic teleportation protocol in which, unlike in the
usual teleportations, the state to be transferred is not destroyed. Rather, the state can be
recovered by the sender in the case where the teleportation fails. The process can then
be repeated till the success is achieved. The protocol has been designed by Meng et al.
[103].

In this scheme there are two mutually separated parties, namely Alice and Bob, playing
the role of sender and receiver, respectively. The sender Alice has two qubits in an
arbitrary two-qubit state given by

[R) 4,0, = (91/00) + g2|01) + g3[10) + ga[11)),
(13.24)

where the coefficients g1, g2, g3, g4 satisfy normalization condition, that is,

4
Z l9:” =
i=1

Alice wishes to transmit this two-qubit state to Bob through a pre-shared quantum

channel between the parties.
There is also a classical communication channel between Alice and Bob.

For this purpose, two 2-qubit entangled states are shared between Alice and Bob which

are given by
|E1) 4,8, = (11/00) + 72|11)),

(13.25)

|Es) 4,8, = —(|01) + |10))

\/_
(13.26)

where |71| > |2/, |T1]? + |72|* = 1. Qubits Ay, A5 belong to Alice, and qubits By, By

belong to Bob. The combined system becomes



|F> - |N>a1a2 ® |E1>A131 ® |E2>A2B2
= % <91T1‘000001> + g171/000010) + g;72/001101)
2

+ g172]001110) + go71]010001
+ g272|011101) + go72|011110

) + g271/010010
)
+ g371/100010) + g372/101101
)
)

+ g371/100001
+ 937'2|101110
+ g472|111101

~ ~ ~—— ~—

)
)
)
+ g471/110001) + g471]110010 )

+ g47o[111110 ) :
alagAlBlAng

(13.27)

To achieve the goal of state transfer, Alice initially makes two CNOT operations on the
qubit pairs (a1, A1) and (ag, As), where qubits 4, and 4, are the control qubits, and
qubits a; and as are the target qubits. Then the state of the whole quantum system

evolves into the state

1
|F1> - E (9171’0000>G1G2A1A2’01>Ble + ngl|0101>ﬂ1azA1A2|00>B1Bz

+ 9172|1010) 4,0,4,4,|11) B,B, + 9172|1111) 4,0, 4,4,|10) B, B,

+ 92T1‘0100> ara2A; A, ‘01>B1Bz + 927-1’000”01&2141142 ’00>3132

+ 92T2|1110> a1a2A1A2|11>B1B2 + g2T2|1011>alﬂ2A1A2|10>

+ 937'1|1000> ajasA; Ay |01>B132 + 937'1|1101>a1a2A1A2 |00>B

+ 9372|0010) 0,0,4,4,/11) B, B, + 937'2|0111>a1a2A1A2|10>BlB2

+ g471|1100) ¢,4,4,4,|01) 5,8, + §471|1001) 4,4, 4,4,|00) B, B,
) ) ) )

+ 947-2|0]-10 a1a2A1A2|11 BlBQ + 94T2|0011 a1a2A1A2|]—0 BlBQ>

(13.28)

Now, Alice introduces two auxiliary qubits g; and g, with initial state |00),,, and
executes two CNOT operation on her qubit pairs (a1, 1) and (az, g2), where qubits a4
and ay are control qubits and the qubits ¢; and g, are the respective target qubits. After

performing these operation, the quantum state of the system evolves into the state



1
- = (ngl ’00>(I1QZ |0000> aa.4; 4,y |01>B1Bz + 0171 |01>Q1Q2

V2

|0101>a1a2A1A2|00>BlB2 + ng2|1O>q1q2|1010>a1a2A1A2|1]—>BlB2
+ 9172|11) 4,,|1111) 0,0, 4, 4,|10) B, B, + 9271(01) gy
|0100) ,0,4,4,|01) B,B, + 9271]|00) 4,4,/0001) 4,4, 4, 4,00) B, B,
+ 9272|11) 4,4,/1110) 0,0, 4, 4, |11) B, B, + 9272[10) gy,
11011) 4,0, 4,4,|10) B, B, + 9371/10) 4,4,/1000) 0,4, 4,|01) B, B,
+ 9371|11) 4,4,11101) 40,4, 4,]00) B, B, + 9372(00) ¢4,
|0010) ,0,4,4,|11) B, B, + 9372|01) 4,4,|0111) 4,4, 4, 4,/10) B, B,
+ 947_1‘1]->q1q2|1100>a1a2A1A2 ’01>3132 + 947-1’10>Q1Q2
|1001>a1a2A1A2|00>B1Bz + g47'2|01>q1q2 |0110>a1a2A1A2|11>3132

+ g47'2|00>q1q2 |0011>a1a2A1A2|10>BlB2> .

(13.29)

Next, to accomplish resumable quantum teleportation of the two-qubit entangled state,

Alice makes

the following controlled wunitary transform under the

{/00),101), [10), |11)} on qubits ay, az, A1, A2, g1 and g,

UMifame: = 100) 4 4,(00] ® |00),,,,(00] ® ui'® + |00) 4, 4,(00]

aiaz

® |01) 4,4, (01| ® uy'™ 4 |00) 4, 4,(00| ® [10),,,,(10]
® ug'™ +[00) 4,4,(00| ® |11) ., (11| @ u*™
+101) 4,4,(01| ® |00),,4,(00]| ® u'* + |01) 4, 4,(01]
® |01) 4,4, (01] ® g™ + [01) 4, 4,(01]| ® |10} 4,4, (10]
® ug'™ + [01) 4,4,(01] ® |11) 4, (11] @ u*™
+110) 4,4, (10| ® |00) 4,4,(00]| @ I + |10) 4,4,(10|
®(01)4,4,(01| @ I + |10) 4,4,(10| ® |10)4,4,(10| ® I
+ ’10>A1A2<10| ® |11>q1q2<11‘ QI+ |11 A1A2<11‘
®100)4,4,(00] @ I + |11) 4,4,(11| ® |01)4,4,(01| ® I
)
)

~ ~ ~—— ~——

+[11) 4,4, (11] ® [10) 4,4, (10| ® 1
+[11) 4,4,(11] @ [11) 4,4, (11| ® T,

basis

(13.30)



where 7 stands for 4 x 4 identity matrix, and the unitary operators u{'* and u,'™ are

given by
| = — (=)
Tf 00 /1-(2)
war _| 0 100
1 0 010 ’
22 _ T2
J1I- (22 00 -z
|1 0 0 0]
T _(T2)2
aaz 0 T \/1 (Tl) 0
uy' = _ .
Y 0
0 0 0 1
After the operation U;}éﬁfquqz on the quantum state |I's), Alice executes Uy’ and

U ﬁﬁf again, the above state evolves into the state



1
’F3> - E <9172|00>Q1Q2’00>a1‘12|00>A1A2’01>3132 + g1 \/Tl — Tg ’11>Q1QZ
|11>ﬂ1a2‘00>A1A2101>BlB2 + 91T2|00>q1q2|01>a1a2|01>A1A2|00>3132
+ g1 \/ — Ty |11>Q1Q2|10> Cl1Cl2|01>A A2|00>Ble + 917-2|00 4192

|10>ﬂ162‘10>A1A2‘11>3132 + 917'2|00>q1q2‘11>a1a2|1]->A1A2|]-0 B1B;

)
)
1 6272100)4,,100),0,[01) 4,4,100) 5,5, + G2/ 72 — 7211},
)
)

|11>ﬂ1a2|01>A1A2'00>3132 + 92T2|00>q1q2|01>a1a2|00>A1A2|01 BB,

+ 924/ 70 — 75111)4,4,110) 0,4,100) 4, 4,|01) B, B, + §272[00) 44,
110) ay0,/11) 4,4,/10) B, B, + 8272/00) 14, |11) 0,0,]10) 4, 4,[11) B, B,
+ 9372/00) 4,4,100) 0,0, 10) 4, 4,11) B, B, + 9372/00) 4,4,/01) g0,
|11>A1A2|10>3132 — 9372/00)4,4:/10) a,0,/00) 4,4,/01) B, B,

+ g3 \/ Tl |11>Q1Q2|01>a1a2|00>A A2‘01>B1B2 3T2|00>(I1Q2

|11>a1a2‘01>A A2100>Ble + 93\/ ’11>Q1Q2|00>ﬂ1a2
|01>A1A2 ’00>3132 + 947-2’00>Q1Q2|00> a1a2‘11>A1A2|]—0> BB,
+ gaT2 ‘00>(I1Q2 |01>a1a2 | 10>A1A2 | 11>B1Bz — 9472 |OO>Q1(12 | 10> ajaz

02) 4,4,100) 5,5, + 84y/72 — 721110010, |0L)a,0,/01) 4,
|00>BIB2 - 94TZ|00>q1q2|11>a1a2|00>A1A2‘01>B1B2

£ a7 — 2111 10, |00} 0,0 00) 4, A2\01>BIB2)

(13.31)

Again, Alice performs two CNOT operation U 1;‘1 and UAZ? on qubits (a;, A;) and
(az, A2), and after that the above state |I's) evolve into the state



1
’F4> - E <9172|00>Q1Q2’00>a1‘12|00>A1A2’01>3132 + g1 \/Tl — Tg ’11>Q1QZ
|11>ﬂ1a2‘00>A1A2101>BlB2 + 917—2|00>Q1(J2|00> a1a2|01>A1A2|00>B1Bz

+ g1 \/ ) |11>q1q2|11>a1a2|01>A A2|00>Ble + 917-2|00>41Q2
|00> ﬂ162‘10> A1A2'11>3132 + 917-2|00> Q1IJ2‘OO> ﬂ1ﬂ2|11>A1A2|10> B1B;
+ 927-2|00>Q1Q2|01>U1a2|01>A1A2|00>B1Bz + g2 \/Tl o 7-2 |11>Q1Q2
|10> ﬂ1a2|01>A1A2'00>3132 + 927-2|00> Q1Q2|01>C11a2 |00>A1A2
|01>Ble + g2 7-12 o 7-22|]-1>q1q2‘10>a1a2|00>A1A2|01>BIB2

+ 927-2|00>Q1(I2 |01>a1a2|11>A1A2|10>Ble + 9272|00>q1q2 |01>a1a2

|10> A1A2|11>3132 + g3T2|OO>Q1Q2|10> a1a2|10> A1A2|11>3132
+ 9372 |00>Q1Q2 | 10> ajas | 11>A1A2 | 1O>BlB2 — @372 |00>Q1QZ | 10>a1ﬂ2

100} 4,4,101) 5,5, + 931/ 72 — 72111410, 101 1,5,100) 4,4,101) 3, 5,

- 937'2|00>q1q2|10>a1a2 |01>A1A2|00>B1Bz + 93 7-12 - 7-22|11>f11‘12
|01>a162‘01>A1A2'OO>Ble + 94T2|00>Q1Q2‘11>l11ﬂ2‘11>A1A2|10>3132
+ 947-2‘00>q1q2|11>a1a2|]—0>A1A2|1]—>Ble - g47—2|00>Q1(I2

)

|11>a1a2|01 A A2100>B B, + 94\/ |11>Q1Q2|00>ﬂ1a2|01>A A
|00>BIB2 - 94TZ|00>q1q2|11>a1a2|00>A1A2‘01>B1B2

£ a7 — 2111 10,100} 0,000) 4, A2\01>BIB2)

(13.32)

The state |T'y) given in Eq. (13.32) can be written in a simplified form as



T4)

7l

1
= \/§T2|OO>CI1Q2 ® E (gl|00> ﬂ1a2‘00>A1A2|01>BlB2

+ 91/00) q,4,(01) 4,4,00) B, B, + 81/00) 4,0,/10) 4, 4,|11) B, B,
+ gl|00> ﬂ162‘11>A A2|10>Ble + g2|01>ﬂ162‘01>A1A2|00>3132
+ 92|01>a1a2‘00>A A2|01>B B, T 92|01>a1a2‘11>A1A2|10>B

+ 92|01)0,4,]10) 4,4,|11) B, B, + 93(10) 4,0,|10) 4, 4,|11) B, B,

>a1a2|11>A A2|10>B1Bz g3|10> a1a2|00>A1A2|01>3132
— 03/10)4,0,(01) 4,4,]00) B, B, + 84[11)0;0,]11) 4,4,|10) B, B,
+ 84[11) 0,0,10) 4, 4,[11) B, B, — 94/11) 0,0,/01) 4, 4,00) 5, B,
) ) )B,

— g4/11)0,0,]00) 4,4,]01 ) 2 1211)0,0 @

gl|]-]->a1a2 ’00>A1A2 ‘01>B1Bz + gl|]-]->a1a2 ’01>A1A2 ‘OO>B132

+ g2|10> aiap ‘01>A1A2 |00> BB, T g2|10> aiap ‘OO>A1A2 |01>3132
+ 93|01>a1a2‘00>A1A2|01>31B2 + 93|01>a1a2‘0]‘>A1A2|00>31B2

+ g4|00> aay |01>A1A2 |00> BB, + g4|00> aias |00>A1A2 |01>Ble) :

Now Alice makes two-qubit projection measurements on her qubits ¢; and g,.

Case 1

If the measurement result is |00) ,,,, then the above state |T,) becomes

ITy)

1
= 5 (gl |00>ala2 ’00>A1A2 |01>3132

+ gl|00>a1a2|01> A2|OO>B132 + gl|00>a1a2|10> A2|11>B1Bz
+ 91‘00>a1a2’11>A A2‘10>B132 + 92‘01>a1a2’01>A A2‘00>B132
+ g2|01>a1a2|00>A A2‘01>Ble + g2|01>a1a2|11>A A2‘10>3132
+ g2/01) ) 4,4,|11) B, B, + 83(10) 0,0,/10) 4,4,]11) B, B,

) ) 4,4,|10) B,B, — 93/10) 0,0,/00) 4, A2|01>3132
— 03/10)q,4,(01) 4,4,]00) B, B, + 94]11)0,0,[11) 4,4,|10) B, B,
+ 04/11)0,0,/10) 4,4,11) B, B, — 94]11)4,4,/01) 4 )
) )A

Az‘O]- 3132) .

A2|OO BB,

(13.33)



(13.34)

Lastly, Alice executes two Bell-state measurements (BSM) on qubits (a1, A;) and
(a2, As). With the Bell basis the above state |T',) can be expressed as

Ty = (IT1)a4, ® [T1),,) ® (91]01) + g2]00) + gs|11) + g4/10)) 5,5,
+ (IT1) a4, ® [ T2)0,4,) ® (91/01) — g2/00) + g3|11) — g4/10)) 5, 5,
+ (IT1)a4, ® [ T3)a,4,) ® (91/00) + g2|01) + g3|10) + g4|11)) 5, B,
+ (IT1)a4, ® [T a)q,4,) ® (91/00) — g2|01) + g3|10) — g4|11)) B, B,
+ (IT2)a,4, ® [T1)a,4,) ® (81/01) + g2/00) — g3[11) — g4[10)) 5,5,
+ (IT2)a4, ®[T2)0,4,) ® (91/01) — g2/00) — g3|11) + g4/10)) B, B,
+ (IT2)a,4, ® [T3)a,4,) ® (91/00) + g2[01) — g5[10) — g4[11)) B, B,
+ (IT2) a4, ® [T4)q,4,) ® (91/00) — g2[01) — g3[10) + g4|11)) B, 5,
+ (1T3)a,4, ® [T1)a,4,) ® (81[11) + g2[10) — g5/01) — g4/00)) B, B,
+ (IT3)a4, ® [T2)q,4,) ® (9111) — g2/10) — g3|01) + g4|00)) 5, 5,
+ (1T3)a,4, ® [T3)a,4,) ® (81/10) + g2[11) — g5]00) — g4/01)) B, B,
+ (IT3)a4, ® [T a)a,4,) ® (91/10) — g2[11) — g3|00) + g4|01)) B, B,
+ (ITa)a4, ® [T1)a,4,) ® (81[11) + g2[10) + g5/01) + g4/00)) B, B,
+ (|T4)aa, ®[T2)0,4,) ® (91[11) — g2[10) + g3/01) — 94/00)) B, 5,
+ (IT4)a4, ® [T3)a,4,) ® (81/10) + g2[11) + g5]00) + g4/01)) B, B,
+ (IT4)a,4, ® [T4)a,4,) ® (81]10) — g2[11) + g5]00) — g4/01)) B, B,

(13.35)

After the execution of Alice's measurement, she sends her results to Bob via 4-bit of
classical channel. Once Bob obtains classical messages from Alice, he performs an
appropriate unitary operation on his qubits to recover the intended state. The details of

the operations are given in Table 13.2.

Table 13.2

Bob's unitary operations conditioned on
Alice's outcomes ¢!

Alice's outcome Bob's operation

|T1>a1A1|T1>a2A2 IBl by (192)32
|T1>a1A1|T2>a2A2 IB1 ® (ﬁz'ﬂz)Bz



Alice's outcome Bob's operation

1T1) 01411 3) 0245 Ip, ® (I)p,

1T1) 41| T4z 40 Ip, ®(9.)p,

1T2) 01411 T 1) s, (9.) B, ® (92) B,
1T2) 01411 2) s (9.)B, ® (9.9:)8,
1T2) 01411 3) 45 (9.)B, ® (1),
1T2) 01411 Ta) ara (9.)B, ® (9.)B,
1T3) 0141 T 1) ara (9.92) B, ® (92) B,
1T3) 01411 T2) s (9.92) B, ® (9.9:) B,
1T3) 01411 3) ar4 (9.92)8, ® (I),
1T3) 01411 Ta) ara (9.92)B, ® (9.)B,
IT9) a1 1) ara, (92)B, ® (V) B,
1T4) 0141 T2)aras (92) B, ® (9.9,) B,
1T4) 141 3) s, (¥2)B, ® (I)B,
1T4) 11| T )z (92) B, ® (9.) B,

As an illustration, assume that Alice's measurement yields | T3 ® Yy . Then
y a1A1 a2A2

the state of the Bob's qubits becomes

(g1/11) — g2[10) — g3]01) + g4/00)) B, B,

2
with success probability |T§‘ and finally Bob performs an appropriate unitary operation

(9,9:)B, ® (¥.9;)B, given from Table 13.2 to recover the original state. The total

success probability of the protocol for the case I is

72|

x 16 = 2|7 |2.
8 | 2|
Case 11

If the measurement result of Alice is |11),,4,, the state |T',) given in Eq. (13.33)

becomes



"

1
Ty) = 7 (91!11>a1a2|00>A1A2|01>BIB2 + 91/11)0,4,/01) 4, 4,/00) B, 5,

+ 92|1O> ajaz |01>A1A2 ‘00>B1Bz + 92|1O> ajaz |OO>A1A2 ‘01>B1Bz
+ 93‘01>a1a2|00 A1A2‘01>3132 + 93‘01>a1a2|01>A1A2‘00>B1B2

)
+ g4|00> a;ay |01>A1A2 |00>Ble + g4|00> a0y |00>A1A2 |01>3132>
)

(91[11) + g2[10) + g3/01) + 94/00))a,0,|00) 4,5, (|01) + [10)) 4,5,

(13.36)

The probability of getting this result is (1 — 2|75|?). We see from Eq. (13.36) that three
pairs of qubits (a, as), (A1, B1) and (As, By) are decoupled. Qubits (As, B) recover
to the initial Bell state of Eq. (13.26). Qubits (a;, as) become a two-qubit arbitrary
entangled state different from Eq. (13.24). Such a result means that our teleportation
process fails. However, Alice can recover the initial state |N),,4, by local operations
(92)a, ® (F2)q, on her qubits a; and as. This is the specific meaning of probabilistic
resumable quantum teleportation scheme, that is, the initial state to be teleported can be
recovered by the sender when probabilistic teleportation fails. This ensures that the
teleportation process can be repeatedly performed between the sender and the receiver
until it succeeds. But at each time of its repetition, we need to have fresh quantum

resource for use.
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14 Teleportation Under Noisy
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14.1 INTRODUCTION

In the actual quantum communication process, there will inevitably be noise in the
quantum channel. In this chapter, we consider teleportation protocols in noisy
environment. There are different types of noises, which are amplitude-damping, bit-flip,
phase-flip, phase-damping, depolarizing noise, etc. Throughout this chapter, four types of
noises are considered, namely amplitude-damping, bit-flip, phase-flip, phase-damping,
under which teleportation without and with control are presented. The analysis of fidelity
of the process against the variation of noise parameters are also discussed. Teleportation

through noisy environment have been discussed in a good number of papers like [43, 57,

14.2 TELEPORTATION OF AN ARBITRARY SINGLE-QUBIT STATE
UNDER NOISY ENVIRONMENT

In this section, we consider the protocol which is discussed in Chapter 8 under Subsection
82

Suppose that the sender Alice prepares the entangled resource given in Eq. (8.2) and
distributes the qubit to the receiver Bob through a noisy environment. The particle 4
belonging to Alice is not affected by the noise of the environment whereas the particle B is
affected by the environmental noise. Kraus operator is used here to characterize the
different types of noises. The density matrix corresponding to the quantum state |N), given

in Eq. (8.1) can be written as wy, = |N)4(X| and that of the quantum resource as


https://doi.org/10.1201/9781003561439-14

wap = |Y1)ap(Y1|. For different noises in the channel, the evolution of the quantum

resource under the effects of quantum noise can be expressed as

e(w) = Z M,; w 4B M;r,

(14.1)

where M; = T4 Q@ K B and K; s are the Kraus operators corresponding to different noises.

Here, the superscripts denote the respective qubits and ‘1’ denotes the conjugate transpose.

The output state of the protocol can be expressed as

@7 = Troa{Uilm. ® (@)U},
(14.2)

where T'r,, is the partial trace over the pairs of qubits (a, A) and U;, i € {1,2,3,4} is
given by

U = {I.a® (9")5}{|Ti)aa(Ys| ® I}

with |T;)q4(Y;| being Alice's measurement results, and (9") g being Bob's corresponding

recovery operation.

The influence of noise on quantum teleportation can be measured by fidelity which, as

discussed in Chapter 7, is given by

F =p (R|@w{"|N) 5,
(14.3)
where |X) g represents the ideal output state. Here, the ideal output state is
®) 5 = (91/0) + g2[1)).

If the fidelity is close to zero, then it indicates that a significant amount of information is
lost due to environmental noise. On the other hand, the value of fidelity close to one
implies that the communication is highly efficient and the transmitted quantum state is well

preserved. In the following we consider different types of noises separately.



14.2.1 TELEPORTATION IN AMPLITUDE-DAMPING NOISY ENVIRONMENT

The Kraus operators of amplitude damping noise are expressed as

wo=lo bl o)

where p is the intensity of the noise from amplitude damping.

According to the formula given in Eq. (14.1), the quantum resource changes to

e ump- Dy (@) 45 = [ 1100} +v/T= pI11)} x {{00] + /T~ p(11]} + p[10} (10]].
(14.4)
Now, the combined state of the whole system is given by
o = IR) o (R| ® €4p(w) 4B-
(14.5)

As an illustration, suppose that Alice's measurement result is |Y4)q4. Then the reduced

density matrix of the final output state is given by

wy AP — Tro g (U0 ® € Amp-Damp(@)]UJ ),

(14.6)

where U, is given by

Uy = {IaA ® (19z19x)3}{!T4>aA<T4\ ® IB}-
Therefore, the final output state is given by
AP - [(gaft) + VT )
% (g2(1] + g13/1 = p(0]) + g3pl1)1]],

(14.7)

where N, is givenas Ny = g2(1 —p) + g5 + gp = 1.



Now, according to the formula described in Eq. (14.3), the fidelity % is

yAmp—Damp — [92 /1 — p+ 92} + 919217

= [giVi-p—gi+1]°+gi1—ad)p

(14.8)

N

The variation of fidelity is given in Figure 14.1.

g, 1?

Figure 14.1 3-Dimensional surface plot for amplitude damping noise as a function of |g1|?> and noise intensity

parameter p. <1

14.2.2 TELEPORTATION IN BIT-FLIP NOISY ENVIRONMENT
The Kraus operators of Bit-flip noise are expressed as

Vi—g 0 wa]

m:h ﬁfﬁm:béo



where ¢ is the noise intensity parameter of bit-flip noise.

According to the formula in Eq. (14.1), the quantum resource becomes

caierip(@)ap = 5 [(1—a)((00) + [11)) x ((00] + (11]

+q(|01) + [10)) x ({01] + (10)]

(14.9)
Now, the combined state of the whole system is given by
w = [R)(R|® € Bit—Flip(T0) AB-
(14.10)

As an illustration, suppose that Alice's measurement result is |Y4),4. Then the reduced

density matrix of the final output state is given by

@ TP — Ty {Usw, @ (e it riip()) aB]U] }

(14.11)

where U, is given by

Uy = {Iaa ® (9:94)B}{|T4)aa(Ys| ® Ip}.
Then, the final output state is given by
P (1= (1) + 01]0)) X (92{1] + 1(0)
+ a(—g1[1) — 92/0)) x (~g1(1] — 82(0]) |,

(14.12)

where Ny = (g7 + 83)(1 —¢) + (93 + o7)g = 1.
Now, according to the formula in (14.3), the fidelity # is calculated as

FPFe — (g7 + g3)v/1 — ¢]* + 407059
= [(1—q) +4gi(1 - g)al-



(14.13)

The variation of fidelity is given in Figure 14.2.
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Figure 14.2 3-Dimensional surface plot for bit-flip noise as a function of |g;|? and noise intensity parameter g. <J

14.2.3 TELEPORTATION IN PHASE-FLIP NOISY ENVIRONMENT

The Kraus operators of phase-flip noise are expressed as

Vi—r 0 Vr 0
K, =

K0: — > —1|>»
0 V1i—r 0 —+r

where r is the noise intensity of phase-flip noise.

According to formula (14.1), the quantum resource becomes



(1= 7)(]00) + [11)) x ((00] + (11])
(100) — [11)) x ({00] — (11))]

(100) +[11)) x ((00] + (11])].

€ Phase—Flip (w) AB —

|~ + Do |

(14.14)

We see that for any value of r € [01], the state of the quantum resource remains as in the

noiseless case. So, the protocol remains unaffected by the phase-flip noise.

A remarkable feature with this case is that it demonstrates the fact that teleportation

protocols can be unaffected by noise in some cases.

14.2.4 TELEPORTATION IN PHASE-DAMPING NOISY ENVIRONMENT

The Kraus operators of phase-damping noise are expressed as:

S R P

where s is the noise intensity of phase-damping noise.

According to formula (14.1), the quantum resource changes to

cPhase Damp(@)a = (1= $)(100) + [11)) x ({00] + (11)

+ 5(]00) x (00] + |11) x <11y)}.

(14.15)

Now, the combined state of the whole system is given by

w/ = ’N>Q<N| X (5Phase—Damp(w))AB‘

(14.16)

As an illustration, suppose that Alice's measurement result is |T4)q4. Then the reduced
density matrix of the final output state is given by

meiPhaseiDamp = TTaA{U4 [@a ® (€ Phase—Damp(@)) 48] Ui }



(14.17)
where U, is given by

Uy = {Taa ® (9:95)}{|Ta)aa(Ts| ® Ip}.

Then, the final output state is given by

U~ Phase—Damp _ N% [(1 = 5)(g2[1) + 91]0)) x (g2(1] + g1(0])
+ s(a311)(1] + g310) (0]) ],
(14.18)

where N3 = (g7 +93)(1 — ) + (g5 + o7)s = 1.

Now, according to the formula provided in Eq. (14.3), the fidelity % is calculated as

Frhase=bamr = (g7 + g3)V1— s]* + (vs8])* + (v/583)°
= [(1—s)+s(g1+1—g])")]

(14.19)

The variation of fidelity is given in Figure 14.3.
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Figure 14.3 3-Dimensional surface plot for phase-damping noise as a function of |g; | and noise intensity parameter s.

|

A study of Figure 14.1, Figure 14.2, Figure 14.3 reveal the expected feature that the

fidelity tends to unit value as the noise parameter tends to zero.

In the above the fidelity analysis is done only with respect to one of the four alternative

results in Alice's measurement. The other three cases can be similarly investigated.

14.3 CONTROLLED TELEPORTATION PROTOCOL OF 2-QUBIT
STATE UNDER NOISY ENVIRONMENT

In this section, we demonstrate a controlled teleportation protocol of 2-qubit state in a
noisy environment. Three parties, namely Alice, Bob, and David, are located in three
different places. Alice plays the role of sender and Bob acts as receiver, whereas David
plays the role of controller. The protocol has two parts. In the first part, we discuss the
protocol under ideal conditions without noise and in the second part, we discuss

teleportation through noisy environment.

Part 1: Teleportation in an ideal environment



Alice wishes to send an unknown 2-qubit state to Bob given by
[R)a,a, = (91/01) + g2/10)),
(14.20)
where g; and g, are unknown coefficients for Alice and meets the normalization condition
911 + |ga|® = 1.

For this purpose, a 4-qubit entangled state is shared amongst Alice, Bob and David which

1s given by

1

E = ——(|0100) + |1011)),

|E) 4B,B,D ﬁ(l ) +[1011))
(14.21)

where Alice possesses the qubit 4, Bob owns the qubits {B1, B2} and the single qubit D
belongs to the controller David. The circuit generation for the entangled state (14.21) is

given in Figure 14.4.

AO> H ® °

By |0) — X
B, |0)
D |0) N

Figure 14.4 Circuit diagram for the generation of the entangled resource given in Eq. (14.21). &

S

/AR
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Also it is assumed that all the parties are connected by classical communication channels.

The complete quantum system can be written as



|F> = 'N>u1u2 b2 |E>ABlBQD
1
= (91/01) + 92/10)) 0,0, ® E(|0100> + [1011)) 4B, B,D

1
= (gl|010100> + 91/011011) + g5/100100) + g2|101011)) .
\/§ a1a2ABlB2D

(14.22)
Alice measures her qubits (az, az, A) in the basis given by
o) arad = |000) + [111) o) aarn = |000) — |111)
aiaz - 9 ajaz - I
V2 V2
o8 arand = |001) + [110) o) et = |001) — |110)
ajas - ) ajas -
V2 V2
cs) |010) + |101) <) |010) — |101)
§5 ﬂlﬂgA - 9 §6 a1a2A - Y
V2 V2
|011) + |100) |011) — |100)
|§7>a1a2A — \/5 bl ‘§8>a1a2A — \/5
(14.23)

After the measurement, Alice sends her result to Bob and David using a classical channels.
After receiving the classical information from Alice, David starts his job by checking the
whole protocol. Once satisfied, he immediately executes a single-qubit measurement on

the basis given by

D = %um 1))
G)p = %um — ).

(14.24)

With the basis given in Eq. (14.23), the complete quantum system (14.22) can be rewritten

as



1
) = = (gl|010100> + g1/011011) + g2|100100) + gg|101011>>
2

alazABlBgD

— )eaa ® (gl|1oo> +92|011>) 6 aad ® <gl|1oo> - 92|011>>

BIB2D BlBQD

F e @ (gnom ; gzuoo>) T o) ama @ (glrom _ gzrwm)

BlBZD BleD

(14.25)

Case I:
If the result of Alice's measurement yields |¢5)q,q4,4, then the remaining qubits are in the

state

Ty) = (91|100> + 92|011>)
B1B,D
Using the basis given in Eq. (14.24), the above state becomes
T'1) = [¢1)p ® (91[10) + 92/01)) B, + [¢2) 0 ® (91/10) — 92(01)) B, B,

After the completion of David's measurement, he sends his outcomes to Bob via 1-bit

classical channel.

If David's outcome is |(1) p, then the state at Bob's qubit becomes (g1|10) + g2|01)) B, B,-

To recover the original state, Bob executes the Pauli operation, which is (¢;) g, ® (¥:) B,

If David's outcome is |(2) p, then the state at Bob's qubit becomes (g1|10) — g2/01)) B, B,-

To recover the original state, Bob executes the Pauli operation, which is
(19:3)31 ® (19:3192,)32.

Case II:
If the result of Alice's measurement yields |6)q,q0,4, then the remaining qubits are in the

state

) = (mf100) - glon) )

B1B,yD
Using the basis given in Eq. (14.24), the above state becomes

T'2) = [C1)p ® (91]10) — g2|01)) B, B, + [¢2)p ® (91/10) + 92/01)) B, B,



After the completion of David's measurement, he sends his outcomes to Bob via 1-bit

classical channel.

If David's outcome is |¢1) p, then the state at Bob's qubit becomes (g1|10) + g2/01)) B, B,-

To recover the original state, Bob executes the Pauli operation, which is
(1990)31 ® (ﬁwﬁz)Bz-

If David's outcome is |(2) p, then the state at Bob's qubit becomes (g1|10) + g2/01)) 5, B,-

To recover the original state, Bob executes the Pauli operation, which is (9,) 5, ® (Vz)B,-

Case III:
If the result of Alice's measurement yields |¢7)q,a,4, then the remaining qubits are in the
state

ra) = (mlo1) + gal100) )
B1B>D
Using the basis given in Eq. (14.24), the above state becomes

T'3) = [€1)p ® (91]01) + g2/10)) B, B, + [¢2)p ® (—01/01) + §2[10)) B, B,-

After the completion of David's measurement, he sends his outcomes to Bob via 1-bit

classical channel.

If David's outcome is |(1) p, then the state at Bob's qubit becomes (g1/01) + g2|10)) ,B,-
To recover the original state, Bob executes identity operation on his qubits, which is
(I) B, ® (I) B, which means that Bob need not act.

If David's outcome is |{2) p, then the state at Bob's qubit becomes (—g1|01) + g2|10)) p, 5,

. To recover the original state, Bob executes the Pauli operation, which is (I), ® (¥,) g,

CaselV:
If the result of Alice's measurement yields |sg)q,q,4, then the remaining qubits are in the

state

o) = (o) - gl100))

B1B>D
Using the basis given in Eq. (14.24), the above state becomes

IT'4) = |¢1)p ® (91]01) — g2/10)) B, B, + [¢2)p ® (—91/01) — g2[10)) B, B,



After the completion of David's measurement, he sends his outcomes to Bob via 1-bit

classical channel.

If David's outcome is |(1) p, then the state at Bob's qubit becomes (g1|01) — g2/10)) B, B,-

To recover the original state, Bob executes identity operation on his qubits, which is
(192)31 ® (I)B2'

If David's outcome is |(2) p, then the state at Bob's qubit becomes (—g1|01) — g2|10)) B, B,

. To recover the original state, Bob executes the Pauli operation, which is (9,) 5, ® (¥,) B,
This is the description of the perfect protocol.

Part 2: Teleportation in a noisy environment

In this part, the same protocol discussed in Part 1 is analyzed in the presence of
environmental noise. The 4-qubit entangled state given in Eq. (14.21) is used as the
quantum resource. We suppose that the controller David produces the entangled resource
in his laboratory and circulates the required particles to the other parties through noisy
environment. The particle D belonging to David is not affected by environmental noise,
whereas the particles 4, B, and B, are affected by environmental noise. We consider four
different types of noises which are given by Kraus operators discussed in Chapter 6. The

density matrix of the quantum resource can be described as
@ap,B,0 = |E) ap,5,0(E|
and that of the intended state given in Eq. (14.20) as w4, = |X) 4,0, (X].

The evolution of the quantum resource under the effects of quantum noise can be

expressed as follows:

(@)=Y (K@K @ KP @ IP) wapp,p (K @ KD @ K @ IP)T,
1,5,k

(14.26)

where K; s are the Kraus operators corresponding to the type of existing noise and meet the

completeness criteria which is
Y (KAOKP 9K @IP) (K9 KD @ KPP @ IP) =1.

The output state of the protocol can be written as



w?#zt = TrﬂlﬂzAD{Ulm [wa1a2f13 ® €(W)]Ulin}

(14.27)
where T'ry,q,4p is the partial trace over qubits (a;, as, A, D) and Uy, is given by
Ulm - {IaluQA ® (,ﬁlm)Ble ® ID}
{IalazA ® ®IBle ® |Cm>D<Cm|}
{|§l>a1a2A<§l’ ® IBlBQ ® ID}
(14.28)

where [ € {1,2,...,8} and m € {1,2} with |§;)q,0,4(s1| and |(m) p((m| representing the
corresponding Alice's measurement results and the controller David's measurement result,
respectively, and (9™)p, g, being Bob's appropriate unitary operation. In view of the
expression (14.25) only four outcomes [;)q,0,4(s:| (I = 5,6,7,8) are possible from the

measurement of Alice.

The influence of noise on quantum teleportation can be measured by fidelity #. The
definition of fidelity is based on the inner product between the output state and the ideal

output state, which is given by
F —B1B <N|wlo#1t|N>B1Bz
(14.29)

where |R) g p, represents the ideal output state. Here, the ideal output state is

X) BB, = (91/01) + g2/10)).

14.3.1 CONTROLLED TELEPORTATION IN AMPLITUDE-DAMPING NOISY
ENVIRONMENT

The Kraus operators of the amplitude damping noise are defined as:

ey o

where / is the strength of the amplitude damping noise.

According to formula given in Eq. (14.26), the quantum resource becomes



 dmp-Damp(@) = %K\/l;j 10100) + %uom) % (\/1%7A (0100)
+ 1—’\<1011|) ( Muoom) x ( @(10010
([mooo ) <\/§<0000|) + (\/@]0013)
x ( %( 011|) (%mom)) x (\j‘imoou)]

Now, the composite state of the whole system is given by

(14.30)

w/ = |N>a1a2 <N| ® (EAmp—Damp(w))ABlB2D-
(14.31)

As in the illustration in part 1 of this section, let us assume that Alice's measurement
outcome yields |¢7)q,0,4 and that David's measurement outcome is |(3) p. Then the density

matrix of the final output state is given by

wc;gt—Amp—Damp TTalazAD{U72 Waray & € Amp— Damp 72}
(14.32)
where U, 1s given by
U72 = {Ia1a2A®[(I)Bl ®(19z)32]®ID}
{IalazA ® ®IB132 ® |CZ>D<C2|}
{|§7>a1a2A<§7| ® IBIB2 ® ID}
(14.33)

Therefore, the final output state becomes
out—Amp—Damp
Wro Z |R 3132 R |7

(14.34)



where {|Rp)B,B,, P = 1,2,3,4,5} s are given by

VBB, = 81(1—X)[01) + goy/1 — AJ10),
[Ro)pp, = — 91v/1— AVA|00),
|R3)p,3, = @g2v'A|00),
)
)

|R4)B,B, = 92\/1 — A\/X|Ol>,
|R5 BB, = —92/\|00>.

Now, according to the formula in Eq. (14.29) the fidelity % is

FArrPm = (A= 1) {2lgal A+ VI X~ 1)
+[g2]2(2 — 2v/1 — X — 3)) + A — 1}.

(14.35)

Classical Channel

"""""""" Bob

Entangled

Receiver
Resource

Classical Channel .

David

Controller

Figure 14.5 Schematic diagram for transfer of quantum states in ideal environment.



The variation of fidelity is shown in Figure 14.6. The other three cases corresponding to

Alice's measurement results can be similarly analyzed.
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Figure 14.6 3-Dimensional surface plot of fidelity for amplitude damping noise as a function of |gs|? and noise

intensity parameter 4. <1

14.3.2 CONTROLLED TELEPORTATION IN BIT-FLIP NOISY ENVIRONMENT

The Kraus operators for the Bit-flip noise are described as:

K:[:m O¢1_J’Klzlﬂﬁ oﬁ]

where « is the noise intensity parameter of bit-flip noise.

According to the formula given in Eq. (14.26), the quantum resource becomes
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Now, the composite state of the whole system can be written as
@ = [R)a,a, (R| ® (€it—Fiip(w)) 4B, ,D-
(14.37)

As in the illustration in part 1 of this section, assume that the measurement result of Alice
and David is |$7) 44,4 and |(2) p, respectively. Then the density matrix of the final output

state is given by

w;;t Bit=Flip TralazAD{U72 [walug @ EBit— Flzp )]UJ2}7
(14.38)
where U, 1s given in Eq. (14.33).
Therefore, the final output state becomes
out Bit—Flip Z |S B
132
(14.39)

where {|S,) 5,8, ¢ =1,2,...,8} s are given by

S1) B, = 91(1— £)¥[01) + gao(1 — k) *[10),
S2) BB, = — g1vVK(1 — K)[00) — gav/k(1 — K)[11),
1S3) BB, = g2vVK(L — K)[00) + g1vK(1 — K)[11),
1S B,B, = — g2kV1— k|01) — g1kV1 — K[10),
S5) 8,8, = 82vV/K(1 — K)[01) + g1v/k(1 — K)[10),
VBB, = — gakV1— K|00) — g1kV1 — k[11),
VBB, = 016V 1 — K|00) + garV1 — K[11),
VBB, = — g162[01) — gar7|10).

Now, according to the formula in Eq. (14.29), the fidelity % is
FEI =14 vk —1)(3 — 4|92 + 4lga] ).

(14.40)



The variation of fidelity #P#~Flir is shown in Figure 14.7. The other three cases

corresponding to Alice's measurement results can be similarly analyzed.

— 1
i 40.9
Ry ! W I
L ) L PRI R
l\ﬂ.\i\ﬁ T A T T,
1\,\“ et ! :‘1:1‘:‘3.‘1{}1‘1\.,“ e W
TG
A
| 410.8

0.4
1
04 ™~ ~ 06
02 ™ '
K . \\”/—,\ 0.2
0 o lg,|?

Figure 14.7 3-Dimensional surface plot of fidelity for bit-flip noise as a function of |g2|? and noise intensity parameter
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14.3.3 CONTROLLED TELEPORTATION IN PHASE-FLIP NOISY
ENVIRONMENT

The Kraus operators of phase-flip noise are defined as:

1_
K, — Vi—7 0 Klz\/?O

0 V-7 ’ 0 —\/T
where 7 is the noise intensity parameter of phase-flip noise.

According to the formula given in Eq. (14.26), the quantum resource becomes



(14.41)
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The total state of the whole system can be expressed as

@ = [N) g0, (X ® (€ Phase—riip(®)) 4B, B,D-
(14.42)

As discussed in the illustration of part 1 of this section, assume that the outcome of Alice's
measurement is |g7)q, 4,4 and that of the controller David is |(s) p. Then the density matrix

of the final output state becomes

w;;tfPhasefFlip — TralazAD{Un [wala2 X é:phasefFlip(w)]U';rg},

(14.43)

where U, 1s given in Eq. (14.33).

Hence, the final output state is

t—Phase—Fli :
out— ase—1r'
Wra P = Z |HT>B1Bz <H7'|7
r=1

(14.44)

where {|H,)p,B,, T = 1,2,...,8} s are given by

|H\)p,p, = 91(1—7)7(01) + ga(1 — )7 [10),
Ha) g, = — g1v/7(1 — 7)[01) + go/7(1 — 7)[10),
|Hs) g, = g1v/7(1 — 7)[01) — gay/7(1 — 7)|10),

|Hi)p,p, = — g17V1— 7(01) — go7v/1 — 7|10),
|Hs)p,3, = — g1v/7(1 —7)[01) + gav/7(1 — 7)[10),
|He) .3, = g917V/1 — 7]01) + gomv/1 — 7]10),
|H7)pp, = —g17V1—7|01) — gomv/1 — 7]10),

|Hs)p,p, = g177|01) — go72]10).
Now, according to the formula in Eq. (14.29), the fidelity .# is given by
yPhasefFlip -1 +4T|92|2(|g2|2 . 1)(3 . 6T—|—47'2).

(14.45)



The variation of fidelity . Phese=Flir is shown in Figure 14.8. The other three cases

corresponding to Alice's measurement results can be similarly analyzed.
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Figure 14.8 3-Dimensional surface plot of fidelity for phase-flip noise as a function of |ga|? and noise intensity

parameter 7. <

14.3.4 CONTROLLED TELEPORTATION IN PHASE-DAMPING NOISY

ENVIRONMENT

The Kraus operators of phase-damping noise are described as:

% v/1—p O

0 0 0
7K:\/ﬁ Ko =

1 2 =
0 V1—p 0 0 0 i
where u is the noise strength of phase-damping noise.

According to the formula given in Eq. (14.26), the quantum resource becomes
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Therefore, the overall state of the system is given by

w’ = |N>a1az<N’ X (5Phase—Damp(w))AB1BzD'
(14.47)

As in the illustration in part 1 of this section, let us assume that Alice's measurement
outcome yields |§7) 4,4,4 and that David's measurement outcome is |(y) p. Then the density

matrix of the final output state is as follows

w?gtfphasefmmp = TTa,0,40{Un2[@aya, ® 5PhasefDamp(w)]U';2}’
(14.48)
where U, 1s given in Eq. (14.33).
Therefore, the final output state is given by
15
wggtfPhasefDamp _ 2 7. 5.5, (T,
p
(14.49)

where {|Js) B, B,, s=12....15} S are given by



T B, = 91(1— p)*|01) + go(1 — ) #[10),

|J2 BB, — 92\/—(1 - )|10>
’J3 BBy, — gl\/_ 1 - |01
|Ja)BiB, = 814/H(1 — p)|01),

gipy/1— pl01),

|J6) BB, = 924/K(1 — p)[10),

gop/1 — p[10),
’JS BBy — 92\//7(1 - /"’“)‘10>7
|J9 BiB, = @2/ 1- M‘10>7

=
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|J10) BB, = gapn/1 — p|10),
i) BB, = g207[10),
BB, = S14/p(1 — p)[01),
[ J13) BB, = gipy/1 — p|01),
[Ji) BB, = gipy/1 — p|01),
)

|J15) 8,5, = g117]01).
According to the formula given in Eq. (14.29), the fidelity Z is
FPhose=Damt — 1 4 2o *u(|g2|* — 1){3 + u(n — 3)}.

(14.50)

The variation of fidelity & Phese=Damp ig shown in Figure 14.9. The other three cases

corresponding to Alice's measurement results can be similarly analyzed.
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In Figure 14.6, Figure 14.7, Figure 14.8, Figure 14.9, since the state is unknown to both
Alice and Bob, the exact value of |gs|? is not available with these two parties. An average
fidelity can be calculated taking into account all four possible outcomes of Alice's

measurement for a fixed parameter of the corresponding type of noise.

A scrutiny of Figure 14.6, Figure 14.7, Figure 14.8, Figure 14.9 shows that the fidelity

tends to 1 as the noise parameter tends to zero. This is what is expected since in that

situation the protocol becomes a perfect protocol where the fidelity is of unit value.



15 Control of Noise in Teleportation
Processes
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15.1 INTRODUCTION

In this chapter, two mechanisms for minimizing the effect of noise on the teleportation
protocol are presented. The fidelity improvement is analyzed with respect to the

variations of control parameters. There are several works on this topic in recent times

15.2 PROTECTING TELEPORTATION PROTOCOL BY WEAK AND
REVERSAL MEASUREMENTS

Teleportation of single qubit in ideal environment was discussed in Chapter 8 which was

followed by the study of the effect of noise on the same protocol in Chapter 14.

In this section it is shown that fidelity can be improved by applications of weak
measurement (WM) and weak measurement reversal (WMR). The protocol for such
applications discussed in the following is given by Li et al. [89].

The WM and WMR operators on the single-qubit quantum system is described,

respectively, as

ey Ve e[

0 vI—Fy 0 1
(15.1)

where the coefficients k,, and k,. are the strength of the weak and reversal measurements,

respectively.
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The quantum resource, which is a Bell state here, is created by Alice and is given by
|E) 4B = % (]00) + |11)). It is shared with Bob by sending one particle to him through

a noisy environment whereby the entangled resource becomes affected with noise.

First, Alice makes a weak measurement on the qubit B before it is distributed. Then the
quantum channel is reduced to the state

BV 45 = %uom VT kl11)).

(15.2)

After that Alice distributes the particle B to Bob through the amplitude damping noisy

channel. Then according to Eq. (14.1), the quantum channel becomes

can(@w) = 5 [{100) + /(1 — ku)(1 - p)11)}

< £400] + /(1 = ku) (1 = p)(L1[} + p(1 — k,,)[10}{10]].

(15.3)

Upon receiving the particle B, Bob applies a WMR operator given in Eq. (15.1) on the

particle B. The above quantum state subsequently reduces to the state

cap(@w r) = 5 [{(VTE00) + /(1 k)1~ D)D)} x {v/T— k(0]

/(1 = k) (@~ p)(11[} + p(1 — ky)(1 — k)[10)(10]].

(15.4)
Now we have the combined state of the whole system which becomes
@ g = N)a(R| ® eap(@)w- .
(15.5)

As an illustration, assuming Alice obtains the measurement result |Y4),4, the reduced

density matrix is described as

w4 = Troa{Usfw, ® €AD(w)W*R]Ui}’



(15.6)
where U, is given by

Uy = {IaA ® (O'ZO'm)B}{|T4>aA<T4| ® IB}

Therefore, the final output state can be written as

out—AD
Ww-R-4 =

NLI[(QW “Eel1) + 810/ (1~ k) (1 - )|0) X (2T — k(1]

+ 019/ (1= ku) (1= p)(0]) + a3p(1 — k) (1 = ko)1) (1],

(15.7)
where Ny = g2(1 — p)(1 — ky) + 93(1 — k) + g2p(1 — ky) (1 — k).

Based on the formula in Eq. (14.3), the fidelity % is computed as

b%ﬂl—m»u—p%+£¢r—mP+gb%%1—m»%r—mﬁ-

y[/[A/?R: N1

(15.8)

The optimal fidelity can be derived from Eq. (15.8) as

_ [g%\/(l —ky)(1—p) + 9%\/(1 — k) (1 — p)]2 + 9%9%]02(1 - kw)4(1 - p)2

AD
F 0)

93 (1 = p)(1 — kw) + 93(1 — ku)(1 — p) + g3p(1 — ku)?(1 — p)
14 g1(1—g})p*(1 — kw)*(1 — p)
1+ g?p(1 — ku) ’

(15.9)
which is under the optimal reversal measurement condition k, = k,, + p(1 — k).

The fidelity is plotted in the Figure 15.1 for the process in the cases of amplitude
damping noise (F“P) and noise after protection by WM and WMR (F42).
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Figure 15.1 3-Dimensional surface comparison of the original amplitude damping fidelity and the optimized

fidelity FgPD , for a fixed weak measurement strength k,, = 0.3. &

From Figure 15.1 we see that the optimized fidelity demonstrates a significant
improvement over the original for moderate to high damping levels illustrating the
effectiveness of WM and WMR applications.

15.3 CONTROL BY ENVIRONMENT ASSISTED MEASUREMENTS
(EAM)

Here we consider the same problem as in the previous section, but the control of noise is
done in a different way by employing EAM along with WM and WMR. The protocol is
given by Harraz et al. [56]. Other similar works employing EAM are discussed in [38,
176, 179].

Let us consider that Alice prepares a maximally entangled pair of particles and sends one
of them to Bob via a noisy quantum resource. The shared entangled state used as the

teleportation resource is represented as



1

|E)ap = —=(10)4]0) 5 + [1) 4|1) B),
V2

(15.10)
where qubit 4 remains with Alice and qubit B is received by Bob.

The entanglement protection scheme involves three stages: pre-decoherence operations,
environment-assisted measurement (EAM) during decoherence, and post-decoherence
recovery. Before transmitting the qubit B, Alice applies a weak measurement (WM) and
a flip operation on it. She then sends the measurement outcome to Bob via the classical
channel used for teleportation. During transmission, EAM is applied to select system
states corresponding to invertible Kraus operators. Based on Alice's message, Bob
performs a post-flip operation followed by weak measurement reversal (WMR) to
recover his share of the entangled pair. The rest of the protocol is the same as the usual
teleportation protocol. The complete protocol is outlined in the following five steps. The
entire protocol is illustrated in Figure 15.2.

E)a .
Entangled
Alice —  pair
|E)ag Weak Pre-flip
|EYg Measurement — operation
L Fi
Protected
Decoherence Entangled Stundar(_j
Channel State |Teleportation
(@) fin Protocol
AB
Environment-
Assisted
Measurement
P Weak
l 5();::]:; Measurement
Bob P IF ! 7| Reversal | | —
: (MR);

Figure 15.2 Schematic diagram for entanglement protection via EAM. &

Step 1. Alice performs a weak measurement (WM) on the qubit intended for Bob using a
complete set of POVM operators Py = LELO, P = LJ{Ll with L, and L, being given by



_ [cos(x/2) 0 _ [sin(x/2) O
Lo= 0 sin(m/2)]’L1 B l() cos(k/2)

(15.11)

where k € [0,7/2] controls the measurement strength. For x = m/2, there is no
measurement, and for x =0, it becomes a projective measurement. The case

0 < k < m/2 corresponds to a weak measurement.

Step 2. Based on the measurement outcome, a pre-flip operation is applied to the qubit.

The flip operators are defined as

10 01
FO_I_lo 1]’F1_’9’”_l1 0}

(15.12)
where / is the identity and 3, is the Pauli-X operator.

If the outcome corresponds to L, no action is needed (Fy = I). If the outcome is L,
¥, (Fy) is applied to the state.

Step 3. The prepared state is then transmitted to Bob through a noisy quantum
environment. The noise is assumed to be AD noise. The standard Kraus operators for AD

noise are:

S e

(15.13)

where p is the noise parameter.

We implement the Environment-Assisted Measurement (EAM) on the decoherence

channel in the following way:

A measurement is performed on the channel, causing it to collapse into one of the
eigenstates of the measured observable. As a result, the system is projected into a state
conditioned on the corresponding outcome. If the channel collapses into the jt"

eigenstate (j = 0,1), the system evolves into the state wé = K;ws(0) K j , up to



normalization. In our study, we consider only the outcome corresponding to the invertible

Kraus operator K, and discard the measurement result of K.

Step 4. Bob then performs post-flip operations. The outcome of the weak measurement
(WM) performed by Alice is communicated to Bob through a classical channel.
Accordingly, Bob applies the same post-flip operations as those used by Alice, as given
in Eq. (15.12).

Step 5. Finally, Bob applies the reversal measurement (WMR) to recover his part of the
entangled state. The RM operators is given by:

oo <[ ] onm=

(15.14)
where u € (0, 1) is the strength of the WMR.

At this stage, the protected entangled pair shared between Alice and Bob is prepared for
use in the standard quantum teleportation protocol.

The entire protection procedure can be represented by a control map denoted as C:

@l = Clwap) = Z):I(MR) FiKoF;Lj(wap) x LI/ K{FI(MR)!
J=Y,

(15.15)
fin
AB
process, the entangled state shared between Alice and Bob transforms into the protected

where @, , is the protected entangled pair. Thus, after the completion of the protection

state given by

[ fin fin

wy;; 0 0 wyy
jim 100 000
“ABT 200 00 0

@l® 0 0 =l

(15.16)

fin _ __fin _ 25K, 2 . 2k fin _ __fint .
where wy;" = wy, = cos*Fu”+ (1 —p)sin“s and wy, =y = usink/1—p.



Due to the partial nature of the RM and the exclusion of certain outcomes during the
EAM process, the proposed scheme operates probabilistically, with an overall success

probability given by

2gu2 +(1- p)sinzg.

success probability = Trace(wf:fg) = cos

(15.17)

Using the protected teleportation channel given in Eq. (15.16), Alice begins the standard
teleportation protocol. She does this by interacting with the unknown input state with her
part of the entangled pair. The input state |N;,), = g1|0) + g2|1) that Alice wants to
send to Bob is given by

|2

gig2 oo’
(15.18)
where |g1|? + |g2|? = 1 and * denotes the complex conjugate.

At the end of the standard teleportation protocol, Bob obtains the output state .,
which can be expressed as

out out
_ 1wy
Wout =

4 out out
4ol wiy
(15.19)
out __ 2 _out __ 2 out __ _outt _ glgausinky/I—p
where w{}" = |g1|*, w3y = |g2|* and w(y’ = w

~ cos?Sul+(1-p)sin?§

To assess the effectiveness of our protected quantum teleportation scheme, we calculate
the average teleportation fidelity between the input state in Eq. (15.18) and the output
state received by Bob in Eq. (15.19), averaged over all possible input states, as follows:

FEAM _ / (Rin [ oue [Rin) A

11 N 4usink/1 —p
15 15[cos? Su? + (1 — p)sin® %]




(15.20)

Similarly, the average teleportation fidelity for the standard teleportation protocol

through an amplitude damping channel (AD) without any protection is calculated as

1 7
standard o
Fow =1 (44/1—p 2p+ 11).

(15.21)

To evaluate the performance of the proposed EAM-based protected teleportation scheme,
we consider the average teleportation fidelity Z24M from Eq. (15.20) along with the

entanglement protection success probability provided in Eq. (15.21).

In Table. 15.1 fidelity and success probability are presented against WM strength x and
RM strength u under the assumption that the decoherence rate is p = 0.5.

Table 15.1

Average Teleportation Fidelity and Success Probability of
Entanglement Protection in the EAM Scheme for Different
Measurement Strengths with Fixed p = 0.5. &

WM strength (x) WMR strength (u) FEAM success probability
/4 0.3 1 0.15

/6 0.5 0.84 0.25

/3 0.7 0.96 0.5

0 1 0.73 1

There are some interesting outcomes from the data in Table 15.1.

The fidelity value 1 is attainable with proper choices of (k,u) but with probability of
success being 0.15.

The usual teleportation in the absence of the protection discussed above, has an average
probability 0.80 with the decoherence parameter fixed at p = 0.5. It is possible to obtain
fidelity higher than this value by fixing the parameters (k,u) appropriately with some
success probability. In the overall scenario the choices of the parameters (x, u) determine
the level of control on the fidelity.



A Remote State Preparation
Scheme of Single-qubit
State
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Remote State Preparation (RSP) scheme is a quantum communication
scheme that allows one party, namely Alice, to prepare a known quantum
state at a remote location, namely in the location of Bob, using a previously
shared entangled resource and classical communication. Unlike quantum
teleportation, in RSP the quantum state to be prepared is known to the
sender but need not be physically available beforehand. There are several

works on this topic as, for instances, [8, 9, 80, 199].

We now describe a basic RSP protocol involving two parties: Alice (the
sender) and Bob (the receiver). Alice wants to remotely prepare a specific

single-qubit quantum state at Bob's site given as
[R) = 01]0) + e2|1),
(A.1)

where the parameters are known to Alice and satisfy the normalization

condition, that is,
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1 ]? + e = 1.

To implement the protocol, Alice and Bob share a three-qubit Greenberger—

' ? \/5

(A.2)

where Alice holds the first two qubits A;, As and Bob holds the third qubit
B.

Based on the known values of 7; and 1,, Alice now defines a set of four

mutually orthogonal two-qubit basis vectors for her qubits Ay, Ao, given by

[ Mi) 4,4, = (2]00) + 12|11)),
‘M2>A1A2 (L2’00> L1‘11>)7
[ Ms) 4,4, = (11]01) + 12|10)),
‘M4>A1A2 (L2’01> - L1‘10>)
(A.3)
Using this basis, the shared quantum resource can be written as
1
|E) 4,4:B = 7 [ M) a4, ®© (1]0) +e2|1))5
+ [My) 4,4, ® (12[0) — ua|1)) 5
(A.4)

Alice then performs a measurement on her two qubits on the basis
{|My), | Ms), | Ms), |My)}. After the measurement, Alice communicates her



result to Bob using a classical channel. Based on this information, Bob
applies the corresponding unitary operation given in Table A.1 to recover
the target state |N).

Table A1

The appropriate unitary operations Bob
needs to apply are summarized below: J

Alice's result State of Bob's site Bob's operation
| M) 4,4, (1a]0) + ¢2[1))5 I
| M2) 4,4, (¢2/0) — ua|1))B 020

If the outcome of Alice's measurement is |Mi) 4,4,, then the state at Bob's
site becomes (¢1|0) + ¢2|1)) g, which is the same as the intended state. So in
this case Bob uses an identity operation, which is to say that Bob need not

act in any way.

If the outcome of Alice's measurement is |Ms) 4,4,, then the state at Bob's
site becomes (t2|0) — ¢1|1))p. To complete the protocol and obtain the

original quantum state, Bob applies a unitary operation o,0,.

Thus, Bob successfully reconstructs the desired state |N) using the shared
entangled channel and classical communication, although the state was
never physically transmitted and was never possessed by the party

intending to create the state at the site of the receiver Bob.



B Joint Remote State
Preparation Protocol of
Single-qubit State

DOI: 10.1201/9781003561439-B

In Remote State Preparation (RSP), a single sender, typically referred to as Alice,
assists a receiver, Bob, in generating a quantum state known to her at Bob's
location using a shared entangled state and exchanging classical information. In
this process, the entire knowledge of the quantum state is possessed by a single
party, which may not be ideal in scenarios involving multiple parties. In some
scenarios, the complete information about the quantum state to be prepared may
not be available to a single party due to technical constraints. Instead, the
information is distributed between two separate parties. In that case, to enable the
remote preparation of such a state at a distant location, a new type of protocol
called Joint Remote State Preparation (JRSP) is introduced. Each sender only
knows partial information about the quantum state, and none of them alone can
perform the preparation. Joint remote state preparation protocols have been
discussed in a good number of papers like [4, 110, 119, 120, 197].

Here, we discuss a basic JRSP protocol involving two senders: Alice and Candy
and one receiver, namely Bob. Alice and Candy jointly want to remotely prepare

an arbitrary single-qubit state

IN), = ¢1]0) + Lzei”H),
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(B.1)

in Bob's laboratory. The parameters ¢1, o satisfy the normalization condition, that
is, |t1]2 + |t2|> =1 and the phase parameter x € (0,2m). Both senders know
only partial information about the state, and the receiver does not know anything
about the intended state. In this protocol, we assume that Alice knows ¢1, ¢ and

Candy knows the phase parameter «.

To initiate the protocol, three parties share a three-qubit maximally entangled
Greenberger—Horne—Zeilinger (GHZ) state as a quantum resource, which is given
by

IE) ach = %uoom +111)),

(B.2)

where Alice holds the first qubit 4, Candy holds the second qubit C and the third
qubit B belongs to Bob.

Based on the known information of ¢, ¢t2, Alice makes a projective measurement

of her single qubit on the basis given by

[M1)a = (1]0) + ¢2[1)),
|M2) a4 = (12]0) — ¢1]1)).

(B.3)

Using this basis, the shared quantum resource |E) 4op can be expressed as

1
|E>ACB = E ‘M1>A X (L1‘OO> + L2|11>)C’B + |M2>A & (L2’00> — L1‘11>)CB .

After the measurement, Alice transmits her outcomes through 1-bit classical

channels to Candy and the receiver Bob. Depending on the measurement results



received from Alice, Candy chooses two sets of basis for measurement of his
qubit.

If Alice's outcome is | M) 4, then Candy performs a projective measurement on

the basis given by

|N11>C
IN3) ¢

(10) +e7™ 1)),
(10) — e~™[1)).

(B.4)

If Alice's outcome is | M) 4, then Candy performs a projective measurement on
the basis given by

IN?)c
NS¢

(e7%[0) + 1))
(e7%[0) — 1))

(B.5)
Case I:

If Alice's result is |Mj) 4, then the state of the remaining particles becomes

(ignoring the constant factor)
‘E1> = (L1‘00> + L2|11>)CB-

Using the basis B.4, the above reduced state | E1)¢p can be written as
1 . .
B1) = 5 |IND)e @ (1]0) + 2™ (1) 5+ [Nz )0 ® (14]0) — 12¢™[1)) 5

Candy now performs his single-qubit projective measurement with the basis
{IN{),|N3)}. After the measurement, he sends his result classically to Bob.
Finally, after receiving all the classical information from the senders, he applies

an appropriate unitary operation given in Table B.1 to prepare the intended state
N).




Table B1

The appropriate unitary operations performed by Bob
corresponding to Alice's outcome | M) 4 &

Candy's result State of Bob's site Unitary operation performed by Bob
[NT)c (11]0) +2e™1))p 1
[N3)e (1]0) — e2e™1))p 0.

If the outcome of Candy's measurement is | N ) ¢, then the reduced state at Bob's
site becomes (11|0) + t2e*|1)) g, which is the same as the intended state. So in

this case Bob uses an identity operation, that is, does not have to act.

If the outcome of Alice's measurement is | N, )¢, then the state at Bob's site
becomes (11|0) — 12€™|1)) . To complete the protocol and obtain the intended
quantum state, Bob applies a unitary operation o, on his qubit. That is end of the

protocol.

Case II:
If Alice's result is |My) 4, then the state of the remaining particles becomes

(ignoring the constant factor)
|Es) = (12100) — 0a[11)) 5.

Using the basis B.5, the above reduced state | E5) ¢p can be written as
1 : .
[B2) = 5| INY)o ® (€™12]0) + 11 [1)) B + [N3) ¢ @ (12[0) — 1a]1)) 5

Candy now performs his single-qubit projective measurement with the basis
{IN2),|N2)}. After the measurement, he sends his result classically to Bob.
Finally, after receiving all the classical information from the senders, he applies

an appropriate unitary operation given in Table B.2 to recover the intended state
[®).




Table B2

The appropriate unitary operations performed by Bob
corresponding to Alice's outcome | M) 4 &1

Candy's result State of Bob's site Unitary operation performed by Bob
[N?)e (€™02/0) +ull))s 0w
‘N22>C (eml’2|0> _L1‘1>)B 020,

If the outcome of Candy's measurement is |NZ)c, then the state at Bob's site
becomes (e%12|0) + ¢1/1)) 5. To obtain the intended state, Bob uses a unitary

operation o, on his particle.

If the outcome of Candy's measurement is |N7)c, then the state at Bob's site
becomes (e%12|0) — ¢1]1))B. To complete the protocol and obtain the original
quantum state, Bob applies a unitary operation 0,0, on his qubit. That is the end

of the protocol.



C Hybrid Bi-directional
Communication Protocol
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In the theory of quantum communications, teleportation enables the transfer of an
unknown quantum state using shared entangled resource and classical
communication while RSP allows the creation of a known quantum state at a

distant location when the sender has knowledge of the state.

A hybrid bi-directional communication protocol integrates both QT and RSP in a
single protocol, enabling simultaneous two-way quantum information transfer
between two parties (namely Alice and Bob). In such protocols, one party (say
Alice) teleports an unknown quantum state to Bob, while Bob simultaneously
prepares a known quantum state at Alice's location using a prior shared entangled

resource. The following works [28, 102, 153, 174] include hybrid protocols

amongst others.

Here, we assume that Alice wants to transfer an unknown single-qubit state |X;),
to Bob and simultaneously Bob wants to create a known single-qubit state |No) to

Alice. These states are given by

N1} = ¢1]0) + ¢2|1),
N2) = 1]0) + 2|1),

(C.1)

where coefficients ¢q, t9, (o1, (oo meet the normalization conditions, that is,
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4 |eo]? =1,
and
[p1]* + |pof® = 1.

To complete the communication task, Alice and Bob share a 4-qubit entangled

state as a quantum resource, which is given by
1
’E>A131A2B2 — E(’0000> + |0011> + |1100> - ‘1111>)A131A2327

(C.2)
where the qubits (a, A1, As) and (Bj, Bs) are held by Alice and Bob, respectively.

The entire system can be expressed as

’F> = |N1>a® |E>A131A2B2
1
= (Ll‘()) + L2‘1>)a X E(‘0000> + ‘0011> + ‘1100> — |1111>)A131A2B2-

(C.3)
Bob's measurement basis is given by
| M) B, = #1/0) + 2| 1),
| Ma) B, = ¢2|0) — ¢1]1).
(C4)

Alice's measurement basis is given by



Mo, = —=(100) + |11))
Yoo, = —=(00) - [11),
Ya)os, = Z=(00) + 110)),
Yo = = (01) - [10).

(C.5)

The choice of such bases is possible since the coefficients 1, @9 are known to
Bob.

Using the above basis {|M;i)g,, |M2)p,}, the entire quantum system can be

rewritten as

1

‘P> = (L1’0> + L2‘1>)a ® (‘0000> + ‘0011> + ’1100> — |1111>)A131A232

3
1
— (@l0) + el + [|M1>32 ® <w1!000> + 2001 + 1[110)
- 902\111>) T |My)s, @ <s02\000> — 11001) + o] 110)
A1BA,
+ g01‘111>> ]
A1BA,

(C.6)

After the measurement, Bob classically sends his results to Alice. After that the
following cases arise. A nonlocal (C'Z) -operation is involved in each case. This
operation can be performed by a third party who can have access to the two
involved qubits.

Case 1:



If Bob's measurement result is |Mj)p,, then the reduced state of the remaining

particles becomes

1
T'1) = (1]0) + ¢9]1))e ® 3 <<,01|000> + 2|001) + 1]110) — @2\111>)
A1B1A2

1
- [|’r1>aA1 ® (101100 + 1192]01) + 151]10) — topal11)) 5o
+ [ T2)qa, ® (L1901/00) + t12|01) — 1201|10) + t2p2|11)) g, 4,
+1T3) 04, ® (L11]10) — 11902]11) + 12¢01|00) + L2¢02|01)) g, 4,

T das, ® (0101]10) — 11p]11) — e9p1]00) Lm\on)&,@] -

(C.7)

Now Alice makes her measurement on the basis
{10 aan 1 T2) a1 L3) e | Ta)an,} and after completing the measurement then

transmits the measurement result to Bob.

After that a quantum phase gate (C'Z) operation is applied on qubit pairs (B, A,)
with qubit 4, acting as a control qubit and qubit B, as the target qubit.

Sub-case I Suppose Alice's measurement outcome is |YX1),4,, then the reduced

state becomes

(101/00) + £12]01) + 12¢01]10) — 12¢2|11)) B, 4,
C_Z) (101]00) + £102[01) + 1201|10) + t202|11)) B, 4,

= (ul0) + 1)), @ (#1|0) + ¢2[1)) 4,

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operation to get the original state. In this case, both the parties
perform identity operation on their respective particles, that is, they are not

required to act in the situation under this sub-case. That is the end of the protocol.

Sub-case II If Alice's measurement outcome is |Y),4,, then the reduced state

becomes



(¢1901]00) + t102|01) — 1201|10) + t2p2[11)) B, 4,
CZ (1p1/00) + t192|01) — 1201[10) — tap2[11)) 5,4,

= (u]0) = 21)) B, ® (#10) + pa[1)) 4,

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (I) 4, and (o), to recover the original state. That

is the end of the protocol.

Sub-case III If Alice's measurement outcome is |Y3)q4,, then the reduced state

becomes

(1101]10) — L1p2|11) + 201|00) + 202|01)) b, 4,
C_Z) (Ll(,01|10> + L1§02‘11> + L2901‘00> + L2(,02|01>)31A2

= (ul1) +12/0)) B, ® (#10) + pa[1)) 4,

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (I) 4, and (o) p, to recover the original state. That

is the end of the protocol.

Sub-case IV If Alice's measurement outcome is |Y4)q4,, then the reduced state

becomes

(101]10) — t1¢p911) — 1201]00) — 12¢02|01)) b, 4,
CZ (1p1[10) + t1g2]11) — 1201]00) — L22[01)) 5,4,

= (ul1) = 2/0)) B, ® (#10) + pa[1)) 4,

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (I)4, and (0,0;)p, to recover the original state.
That is the end of the protocol.

Case 2:

If Bob's measurement result is |Ms)p,, then the reduced state of the remaining

particles becomes



1
T = (o) + al1)s @ 3 (2a000) — i001) + al110) + 1) )

AyB1 Ay
— % [\Tlml ® (L192|00) — 1101|01) + L202|10) + t2¢1|11)) B, 4,
+ | T2)aa, ® (L1902|00) — L101|01) — 12p3|10) — L2p1[11)) By 4,
+ | T3)aa, ® (L102|10) + L1601[11) + 1202|00) — L201|01)) B, 4,
 Yi)as,  (apal10) + a1~ aal00) + 12n|01)) 5
(C.8)
Now Alice makes her measurement on the basis

{1Y1)aass | X2)adr | X3)aa,, | Ta)aa,} and after completing the measurement she

transmits the outcome to Bob through a classical channel.

After that a quantum phase gate (C'Z) operation is applied on qubit pairs (B, As)
with qubit 4, acting as a control qubit and qubit By as the target qubit.

Sub-case I If Alice's measurement outcome is |Y1),4,, then the reduced state

becomes

(£1902|00) — £101|01) + 1202[10) + t2¢01|11)) B, 4,
CZ (1192]00) — 1191/01) + t202[10) — 12¢01|11)) By,

= (ul0) + 2[1)) 5, @ (#2/0) — ¢1[1)) 4,

Finally, after receiving the measurement results, Alice and Bob perform
appropriate unitary operation (o,0;) 4, and (I)p, on their respective qubits to get
the original state. That is the end of the protocol.

Sub-case II If Alice's measurement outcome is |Y2),4,, then the reduced state

becomes

(£192|00) — £101|01) — 1202[10) — t2¢01|11)) B, 4,
¢z (102]00) — £101]|01) — 12402|10) + t2¢01|11)) B, 4,

= (ul0) = ©[1))5, ® (#2/0) = ¢1[1)) 4,



Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (0,0)4, and (o)p, to recover the original states.
That is the end of the protocol.

Sub-case III If Alice's measurement outcome is |Y3),4,, then the reduced state

becomes

(102]10) + t101]11) + 12¢2]00) — 12¢1|01)) , 4,
¢z (t102|10) — L101|11) + 1902]00) — 12¢01|01)) g, 4,

= (ull) + ©[0))5, @ (#2(0) = ¢1[1)) 4,

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (¢,0,) 4, and (o,)p, to recover the original states.
That is the end of the protocol.

Sub-case IV If Alice's measurement outcome is |Y4),4,, then the reduced state

becomes

(102]10) + 111]11) — 12¢2]00) + 12¢1|01)) B, 4,
C_Z> (1902]10) — 1101|11) — 12402|00) + 12¢01|01)) B, 4,

= (ull) = [0))5, @ (#2(0) = ¢1[1)) 4,

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (0,0;)4, and (0,0.)p, to recover the original

states. That concludes the protocol.
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