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Preface
This book is written with an objective of providing a theoretical as well as
mathematical introduction to the concept of teleportation in a self-contained
manner. The required mathematics and physics is described at the
beginning. The description starts from the elementary level and is restricted
to the minimum required for serving the purpose of the book without
making any compromise with rigor. This is done with a view to making the
book accessible to scientists and engineers without having a specialized
knowledge in physics, applied mathematics or computer science.

The book is divided into three parts. The contents of these three parts are
concisely as follows.

In the first part the requisite background materials are given. It is a self-
contained presentation. The mathematics is presented from the preliminary
level and includes everything which is required for the understanding of the
subject matter contained in the book. The requisite part of quantum
mechanics is also described in a self-contained way. It is better that the
reader has an introductory knowledge of quantum mechanics, but this is not
necessary. The topics of quantum physics covered include qubits, multi-
qubit systems, entanglement, quantum evolution, quantum noise, quantum
measurement and a general description of quantum communication system.
The mathematics discussed here includes linear space, Hilbert space, linear
operators in general, Hermitian operators, unitary operators, projection



operators, tensor products and the partial trace operations. There are several
illustrations on the topics included in this part.

In the second part the topics are teleportation protocols for different types of
states using appropriate entangled quantum resources as channels. There are
several versions of teleportation like controlled teleportation, multi-hop
teleportation, probabilistic teleportation etc. whose final aim is to transfer
quantum states with the help of entanglement resources. The above-
mentioned variations are described in this section.

The third part of this book is dedicated to the analysis of teleportation
protocols through noisy channels. Noise is an inalienable phenomena in
every communication system. We consider quantum noise affecting the
entangled communication channel. This noise is modeled through Kraus
operators. Four types of noises are considered, namely, Amplitude-
damping, Bit-flip, Phase-flip and Phase-damping noise. In this part we
analyze the effects of these noises on the concerned teleportation protocols
by calculating the fidelity of the process. Fidelity is a measure by which we
understand the deviation of the quantum state actually obtained at the
receiver's end from that which was originally intended for transfer. Further
it is important to control the effect of noise as far as possible. We present in
this part weak and reversal measurements and environment assisted
measurements as methods for such control.

The book can be utilized by following the interdependency chart of the
chapters given below.



Long Description for Figure



Since the literature on teleportation is vast, we discuss some representative
protocols in order to present the basic ideas, quantum mechanical
techniques and the methodologies which are in use in this study. The
bibliography to a certain extent contains the prominent works on this
subject. Particularly, the readers interested in the fundamental ideas of
teleportation will find it in Chapter 8 which is accessible after going
through the prerequisites given in Chapters 1, 3 and 4.

The primary readership of the book is for Theoretical Physicists, Applied
Mathematicians, Computer Scientists, Telecommunication Engineers and
Technologists belonging to all branches of Electrical Technology. Beyond
the primary readership, interested Scientists and Engineers belonging to the
disciplines of Chemistry, Chemical Engineering, Applied Physics, Space
Science, Material Science and Information Technology professionals are
supposed to be benefited through the book. Certain portions of the book can
serve as parts of courses on Quantum technology/ Quantum information
science.

We gratefully acknowledge all the authors whose works have been used in
parts of the book. Also we express our gratitude to all who have helped
directly or indirectly in making our project of writing the book into a
reality.

Dr. Binayak S. Choudhury, Professor

Dr. Soumen Samanta, Assistant Professor
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Essential Concepts



1 Linear Spaces and
Operators

DOI: 10.1201/9781003561439-1

1.1 INTRODUCTION
In this chapter, the mathematics that are used in the discussion of the
teleportation protocols are provided. Hilbert spaces, which are linear spaces
with appropriate geometries brought about by introducing inner products, form
the mathematical framework of the above-mentioned discussion. These spaces
along with the relevant operators for describing the required part of quantum
physics are presented here. For extensive studies on the topics included in this
chapter, the references [33, 34, 62, 78, 113, 136, 152, 156, 170, 189] are useful.

1.2 LINEAR SPACE
In this section we begin with the definition of linear space and introduce
Hilbert space consequently. The mathematical framework for the discussion of
our topics in this book is the Hilbert spaces. Moreover, we restrict our
consideration only to finite-dimensional spaces as per our requirement. The
notations used here are different from those which appear in the usual treatise
on linear algebra and functional analysis. This is due to Dirac which is used in
specific areas of quantum mechanics. Especially these notations (ket and bra

https://doi.org/10.1201/9781003561439-1


vectors as they are called) are standard notations in quantum information
theory.

1.2.1 DEFINITIONS AND ILLUSTRATIONS

Let V be a non-empty set and ‵+′ be a binary operation on V. Let C be the field
of complex numbers, and let ‵⋅’ be an external composition of C with V. Then V
or more generally (V , C, +, . ), is said to be a Linear space over the field C of
complex numbers if the following conditions are satisfied:

1. |σ1⟩ +|σ2⟩ =|σ2⟩ +|σ1⟩, ∀ |σ1⟩, |σ2⟩ ∈ V  (Commutativity);

2. |σ1⟩ +(|σ2⟩ +|σ3⟩) =(|σ1⟩ +|σ2⟩) +|σ3⟩, ∀ |σ1⟩, |σ2⟩, |σ3⟩ ∈ V

(Associativity);

3. there exists an element |ϑ⟩ in V such that |σ⟩ + |ϑ⟩ = |σ⟩, ∀ |σ⟩ ∈ V

(Existence of Identity);

4. for each |σ1⟩ ∈ V  there exists an element |σ2⟩ ∈ V  such that 
|σ1⟩ + |σ2⟩ = |ϑ⟩, (Existence of Inverse);

5. (e. f). |σ⟩ = e. (f. |σ⟩), ∀ e, f ∈ C and ∀ |σ⟩ ∈ V ;

6. e. (|σ1⟩ + |σ2⟩) = (e. |σ1⟩) + (e. |σ2⟩), ∀ e ∈ C and ∀ |σ1⟩, |σ2⟩ ∈ V ;

7. (e + f). |σ⟩ = (e. |σ⟩) + (f. |σ⟩), ∀ e, f ∈ C and ∀ |σ⟩ ∈ V ;

8. 1.|σ⟩ = |σ⟩, 1 being the identity element in C.

In mathematics, a linear space or a vector space is defined on an arbitrary field,
which is an algebraic structure defined separately through certain algebraic
operations. We do not require linear spaces except for those over the field of
complex numbers. So we have noted the above definition with respect to the
field of complex numbers only.



Let V be a linear space over the field C of complex numbers. Let 
|σ1⟩, |σ2⟩, … , |σk⟩ ∈ V . A linear combination of a set of vectors 
{|σ1⟩, |σ2⟩, … , |σk⟩} is any vector

|Ξ⟩ = e1|σ1⟩ + e2|σ2⟩ + … + ek|σk⟩,

where e1, e2, … , ek are complex numbers.

If S = {|σ1⟩, . . . , |σn⟩}, then the set of all linear combinations of the elements
of S is denoted by L(S) and is called the linear span or simply the span of S.

A finite set of vectors {|σ1⟩, |σ2⟩, … , |σk⟩} is said to be linearly dependent if
there exist scalars e1, e2, … , ek not all zero in C such that

e1|σ1⟩ + e2|σ2⟩ + … + ek|σk⟩ = 0.

(1.1)

The set is said to be linearly independent in V if the equality given in Eq. (1.1)
is satisfied only when e1 = e2 = ⋯ = ek = 0.

Hilbert spaces can be of infinite dimensions. Particularly, the L2-space, the
space of square-integrable functions, has extensive use in the quantum
mechanics of continuous systems. As already noted, these spaces will not be
used in the present context. For that reason, discussions on infinite-dimensional
spaces are omitted.

1.2.2 INNER PRODUCT SPACE AND HILBERT SPACE

The inner product of two vectors |Ω⟩ and |Ξ⟩ is given by

⟨Ω|Ξ⟩ = f ∗
1 e1 + f ∗

2 e2 + ⋯ + f ∗
nen =

n

∑
i=1

f ∗
i ei

(1.2)



where |Ω⟩ = ∑n
i=1 fi|σi⟩ and |Ξ⟩ = ∑n

i=1 ei|σi⟩.

The inner product ⟨Ω|Ξ⟩ is a complex number in general and independent of
their representations.

If two vectors |Ω⟩ and |Ξ⟩ are such that ⟨Ω|Ξ⟩ = 0, then |Ω⟩ and |Ξ⟩ are
orthogonal. If {|Ω1⟩, |Ω2⟩, . . . , |Ωp⟩} are p vectors such that 
⟨Ωk|Ωl⟩ = δkl, k, l = 1, 2, . . . , p, then the set {|Ω1⟩, |Ω2⟩, . . . , |Ωp⟩} is called
an orthonormal set.

Referring to the completeness relation ∑n
i=1 |σi⟩⟨σi| = I, (described in Section

1.2) we have

|Ξ⟩ = I. |Ξ⟩ =
n

∑
i=1

|σi⟩⟨σi|Ξ⟩ =
n

∑
i=1

ei|σi⟩,

where ei = ⟨σi|Ξ⟩. The above formula provides with the determination of the
coefficients for vectors |Ξ⟩ in its expansion with respect to a given basis (see
below Subsection 1.1.3).

The inner product has certain properties which are enumerated below:

1. ⟨Ω|Ξ⟩ = ⟨Ξ|Ω⟩∗

2. ⟨Ω|(e1|Ξ1⟩ + e2|Ξ2⟩) = e1⟨Ω|Ξ1⟩ + e2⟨Ω|Ξ2⟩

3. ⟨Ξ|Ξ⟩ ≥ 0 and ⟨Ξ|Ξ⟩ = 0 if and only if |Ξ⟩ = 0, the zero vector of the
linear space.

NOTE: Actually the above properties are used for an axiomatic definition of
Inner Product on a vector space to make it into an inner product space. For our
special purpose, we have taken the definition as in Eq. (1.2).

A complete inner product space is called Hilbert space. The most elementary
but very significant example of a Hilbert space is the space spanned by two
elements {|0⟩, |1⟩} which we denote by H2. Its elements are given as



|Ξ2⟩ = e0|0⟩ + e1|1⟩,

where e0 and e1 are complex numbers.

The inner product on this space is given by

⟨k|l⟩ = δkl, k, l = 0, 1,

that is, explicitly

⟨0|0⟩ = ⟨1|1⟩ = 1

and

⟨0|1⟩ = ⟨1|0⟩ = 0.

This particular space H2 is used for the mathematical description of a qubit.

Another example is Hd (d is an integer) which describes the d-level quantum
systems known as qudit.

A qudit is a generalization of a qubit. A qudit can be in any quantum state 
|0⟩, |1⟩, . . . |d − 1⟩, and any superposition of these states, similar to a qubit
being in a superposition of |0⟩ and |1⟩. For example, a qudit with d = 3, known
as qutrit, could be in a superposition of three states:

|Ξ3⟩ = e1|0⟩ + e2|1⟩ + e3|2⟩.

We will be concerned only with qubits.

1.2.3 BASIS AND DIMENSION

Let V be a linear space over C and S = {|σ1⟩, |σ2⟩, … , |σk⟩} be a subset of V.
We say that S is a spanning set of V if every vector |σ⟩ ∈ V  can be expressed as
a linear combination of the elements in S. In such cases, we say that S spans V,
that is, V = L(S).



Let V be a linear space. A minimal set of elements in V that spans V is called a
basis for V. Equivalently, a basis for V is a set of elements that is (i) linearly
independent and (ii) spans V, that is, V = L(S). The number of elements in a
basis for V is called the dimension of V, denoted by dimV.

From the above definition, any vector |Ξ⟩ ∈ V  can be written as

|Ξ⟩ = e1|σ1⟩ + e2|σ2⟩ + ⋯ + en|σn⟩ =
n

∑
1

ei|σi⟩,

where {|σ1⟩, |σ2⟩, … , |σn⟩} forms a basis for the vector space V.

The above expression is unique insofar as the basis remains the same. With
respect to the given basis mentioned above, we can represent the element |Ξ⟩ as

a column vector .

As per the convention in quantum mechanics, we call |Ξ⟩ a ‘ket’ vector or
simplify a ket. This is known as Dirac's notation and is sometimes called
Dirac's ket vector. There is a corresponding concept of ‘bra’ vector, which is
written as ⟨Ξ| corresponding to the ket |Ξ⟩.

The representation of ⟨Ξ| which is actually the complex conjugate of |Ξ⟩ is
given by a row vector (e∗

1, e∗
2, … , e∗

n) in the same basis.

A basis {|σ1⟩, |σ2⟩, … , |σn⟩} is orthonormal if

⟨σk|σl⟩ = δkl, k, l = 1, 2, . . . ,n

where δkl is the Kronecker's delta, which is

⎛⎜⎝ e1

e2

⋮
en

⎞⎟⎠ δkl = {1, if k = l.
0, if k ≠ l



where ⟨σi|σj⟩ stands for the inner product.

In the Hilbert space H2, we have the basis {|0⟩, |1⟩} which is a 2-dimensional
Hilbert space.

As described above, we can describe |0⟩ as ( ) and |1⟩ as ( ). Then any 

|Ξ2⟩ = e1|0⟩ + e2|1⟩ will be written as

This is an alternative representation of H2.

1.2.4 CHANGE OF BASIS

There can be more than one basis of the same vector space (in fact, an infinite
number of bases is possible). As an instance, for the space H2 described
previously, two bases are noted in the following:

{|0⟩, |1⟩} and {
1

√2
(|0⟩ + |1⟩),

1

√2
(|0⟩ − |1⟩}.

The choice of basis is important in quantum mechanics since a basis is related
to a particular measurement performed on the system. The following is the
mechanism by which we can bring about a change of basis. Since our
consideration will be only orthonormal bases, we describe the corresponding
change only for these types of bases.

It is possible to pass from an orthonormal basis (|γi⟩ , i = 1, 2, . . . ,n) to
another (|γ

′

i⟩ , i = 1, 2, . . . ,n) by means of a unitary transformation S:

|γ
′

i⟩ =∑
j

Sji|γj⟩ (i = 1, 2, … ,n).

(1.3)

1
0

0
1

e1 ( ) + e2 ( ) = ( ).
1
0

0
1

e1

e2



Then Ski = ⟨γk|γ
′

i⟩.

A generic vector

|α⟩ =∑
i

ai|γi⟩ (ai ≡ ⟨γi|α⟩),

(1.4)

can be expressed in the new basis as

|α⟩ =∑
j

a
′

jSij|γj⟩ (a
′

j ≡ ⟨γ
′

j|α⟩),

(1.5)

where we have used Eq. (1.2). Thus, the old and new vector components are
linked by the relation

ai =∑
j

Sija
′

j.

(1.6)

As an illustration, if we consider B1 = {|0⟩, |1⟩} and B2 = {|ξ1⟩, |ξ2⟩} with 
|ξ1⟩ = 1

√2
(|0⟩ + |1⟩), |ξ2⟩ = 1

√2
(|0⟩ − |1⟩), then the matrix T = (tij)2×2 for

the transformation from B1 to B2 is given by T = .

1.3 OPERATORS ON HILBERT SPACES
Our consideration is limited by our requirement of three kinds of operators on a
linear space, namely self-adjoint operator, unitary operator, and projection
operator. Since quantum mechanics is a linear theory, we only require linear
operators.

⎡

⎣

1
√2

1
√2

1
√2

− 1
√2

⎤

⎦



1.3.1 LINEAR OPERATORS AND MATRIX REPRESENTATIONS

An operator is a mapping L : H1 → H2 which is from a linear space H1 to
another linear space H2.

The operator L is linear if

L(e|τ1⟩ + f|τ2⟩) = (eL|τ1⟩ + fL|τ2⟩)

for all |τ1⟩, |τ2⟩ ∈ H1 and scalars (complex numbers in our consideration) e
and f.

If L is a linear operator, then eL defined as (eL)|τ⟩ = e(L|τ⟩) is a linear
operator and if L1,L2 are two linear operators, then L1 + L2 defined as 
(L1 + L2)|τ⟩ = L1|τ⟩ + L2|τ⟩ is also a linear operator.

Considering the above two statements, we conclude that eL1 + fL2 is a linear
operator whenever L1,L2 are linear operators and e,f are scalars.

Given two bases of H1 and H2 of dimensions n and m, respectively, a linear
operator L : H1 → H2 can be represented by an m × n matrix that acts on the
n-tuple corresponding to a vector in H1. This representation of a linear operator
by a matrix is specific to the choice of bases.

If L : H1 → H2 is a linear operator, {|τ1⟩, . . . , |τn⟩} and {|π1⟩, . . . , |πm⟩} are
bases for H1 and H2, respectively, then its matrix representation is (L)ij, given
by

Lij = ⟨πi|L|τj⟩.

Inverse Operator

Consider a linear operator L on a Hilbert space H, that is, L : H → H. If there
exists an operator M such that

LM = ML = I,



we call M the inverse of L and write M = L−1. If we have |π⟩ = L|τ⟩, then in
that case |τ⟩ = L−1|π⟩. It is possible to show that the inverse of an operator L
exists if and only if the equation L|τ⟩ = 0 (the zero ket |0⟩) implies that |τ⟩ is
the zero vector. Considering the matrix representation of L, it is immediate to
conclude that the inverse of an operator L exists if and only if detL ≠ 0.

1.3.2 OUTER PRODUCTS

Let H be any Hilbert space and |τ1⟩, |τ2⟩ ∈ H. Then the outer product of |τ1⟩

and |τ2⟩ is a linear operator |τ1⟩⟨τ2| on H defined by its action on an arbitrary
ket |τ3⟩ in H as

(|τ1⟩⟨τ2|)|τ3⟩ = |τ1⟩⟨τ2|τ3⟩ = (⟨τ2|τ3⟩)|τ1⟩.

The identity operator I is defined as I|τ⟩ = |τ⟩, for all |τ⟩ ∈ H.

For an orthonormal basis {|π1⟩, |π2⟩, … , |πn⟩} of a (finite-dimensional)
Hilbert space H, we have for all |τ⟩ ∈ H,

From the above, we have the completeness relation that for any orthonormal
basis {|π1⟩, |π2⟩, … , |πn⟩}, the following relation holds

n

∑
i=1

|πi⟩⟨πi| = I.

(1.7)

(|π1⟩⟨π1| + |π2⟩⟨π2| + … + |πn⟩⟨πn|)|τ⟩
= |π1⟩⟨π1||τ⟩ + |π2⟩⟨π2||τ⟩ + … + |πn⟩⟨πn||τ⟩

=
n

∑
i=1

(⟨πi||τ⟩)|πi⟩

= |τ⟩.



The above relation is an extremely important result in the discussion of
quantum information theory.

1.3.3 HERMITIAN OPERATORS

Given a linear operator L : H → H on a Hilbert space H, L† on H, the adjoint
or Hermitian conjugate of L is another linear operator L† such that for all
vectors |α⟩, |β⟩ ∈ H,

⟨α|L|β⟩ = ⟨β|L†|α⟩∗.

(1.8)

We call an operator self-adjoint or Hermitian if L† = L.

For a linear operator L, if there exists a scalar (complex number) such that

L|α⟩ = λ|α⟩

for some |α⟩, then λ is called the eigenvalue of L and |α⟩ is called eigenket
corresponding to the eigenvalue λ.

The Hermitian operators have the following properties:

1. They have real eigenvalues.

2. The eigenkets corresponding to different eigenvalues are orthogonal.

3. There exists a complete set of orthogonal eigenkets corresponding to
every Hermitian operator.

It follows from the above that there exist eigenkets |α1⟩, . . . , |αn⟩ for a self-
adjoint operator L on a finite-dimensional Hilbert space H of dimension n such
that

⟨αi|αj⟩ = δkl k, l = 1, 2, . . ,n



and for any |γ⟩ ∈ H,

|γ⟩ = e1|α1⟩+. . . +en|αn⟩

for some scalars e1, . . . , en.

The above is equivalent to the fact that the eigenvalues |α1⟩, . . . , |αn⟩ form an
orthonormal basis of H.

For a given basis {|α1⟩, |α2⟩, … , |αn⟩}, the matrix corresponding to L is

Lij ≡ ⟨αi|L|αj⟩.

(1.9)

Then

⟨Lγi|γj⟩ = ⟨γi|L
†γj⟩ and this relation can be written as

(Lji)∗ = (L†)ij.

(1.10)

In matrix representation,

L† = (LT )∗.

(1.11)

For a self-adjoint operator, we have

L = (LT )∗.

(1.12)

(L†)ij = ⟨αi|L†|αj⟩

= ⟨αj|L|αi⟩

= ⟨αi|L|αj⟩
∗



1.3.4 UNITARY OPERATORS

An operator L on a Hilbert space H is said to be unitary if

LL† = L†L = I.

(1.13)

From this definition, we have that the adjoint of a unitary operator coincides
with its inverse,

L† = L−1,

(1.14)

and that L† is unitary. The product LM of two unitary operators is unitary, since

(LM)(LM)† = LMM †L† = I.

(1.15)

Unitary operators preserve the inner product between kets. For any two kets 
|σ1⟩ and |σ2⟩, if |τ⟩ = L|σ1⟩ and |π⟩ = L|σ2⟩, then

⟨τ|π⟩ = ⟨Lσ1|Lσ2⟩ = ⟨σ1|L†L|σ2⟩ = ⟨σ1|σ2⟩.

(1.16)

With |σ1⟩ = |σ2⟩, we see that a unitary operator preserves the norm of a ket
vector.

1.3.5 PROJECTION OPERATORS

A projection operator P : H → H, where H is a Hilbert space, is an operator
satisfying the following:

1. P = P †, that is, P is self-adjoint.



2. P 2 = P .

3. P is continuous.

When H is a finite-dimensional Hilbert space, as in our present consideration,
P is automatically continuous.

Particularly, for a given vector |α⟩, the operator P = |α⟩⟨α| is a projection
operator. It is proved in the theory of Hilbert spaces that a projection operator
determines a subspace of a Hilbert space to which all elements of H are
projected by the operator. This result has important consequences in problems
of quantum measurements.

1.4 TENSOR PRODUCT
Tensor product of two or more Hilbert spaces is a method of combining these
Hilbert spaces into a higher dimensional space. It is utilized to describe
composite quantum systems. Tensor products of operators are also described in
this section.

1.4.1 TENSOR PRODUCT OF HILBERT SPACES

Consider two Hilbert spaces H1 and H2 of dimensions m and n, respectively. In
the tensor product H of H1 and H2, written as H = H1 ⊗ H2, we can associate
with each pair of vectors |μ⟩ ∈ H1 and |ν⟩ ∈ H2 a vector belonging to H,
denoted by |μ⟩ ⊗ |ν⟩ and call it the tensor product of |μ⟩ and |ν⟩. By definition,
the vectors in H are linear superpositions of the above vectors |μ⟩ ⊗ |ν⟩ where
the following properties are satisfied:

1. for any |μ⟩ ∈ H1, |ν⟩ ∈ H2 and e ∈ C, 
e(|μ⟩ ⊗ |ν⟩) = (e|μ⟩) ⊗ |ν⟩ = |μ⟩ ⊗ (e|ν⟩);

2. for any |μ1⟩, |μ2⟩ ∈ H1 and |ν⟩ ∈ H2, (|μ1⟩ + |μ2⟩) ⊗ |ν⟩ =|μ1⟩ ⊗ |ν⟩ +
|μ2⟩ ⊗ |ν⟩;



3. for any |μ⟩ ∈ H1 and |ν1⟩, |ν2⟩ ∈ H2, |μ⟩ ⊗ (|ν1⟩ + |ν2⟩) =|μ⟩ ⊗ |ν1⟩ +
|μ⟩ ⊗ |ν2⟩;

In the following, instead of |μ⟩ ⊗ |ν⟩, we shall often use the notations |μ⟩|ν⟩, 
|μ, ν⟩ or |μν⟩.

Let {|μ1⟩, |μ2⟩, … , |μm⟩} and {|ν1⟩, |ν2⟩, … , |νn⟩} be the bases of the
Hilbert spaces H1 and H2, respectively. Let 
|μ⟩ = e1|μ1⟩ + e2|μ2⟩ + … + em|μm⟩ and 
|ν⟩ = f1|ν1⟩ + f2|ν2⟩ + … + fn|νn⟩, respectively, be two elements of H1 and
H2. Then with respect to the bases mentioned above,|μ⟩ and |ν⟩ are given by
column vectors

We consider the set {|μ1ν1⟩, |μ2ν2⟩, … , |μmνn⟩}, that is, 
{|μiνj⟩ : i = 1, 2, . . . ,m, j = 1, 2, . . . ,n}. Then the linear space H consisting
of vectors

is the tensor product of H1 and H2 where the operations are

and the inner product is

|μ⟩ ≡ and |ν⟩ ≡ .

⎛⎜⎝ e1

e2

⋮
em

⎞⎟⎠ ⎛⎜⎝ f1

f2

⋮
fn

⎞⎟⎠{|Ξ⟩ =∑
i,j

eij|μiνj⟩, i = 1, 2, . . . ,m, j = 1, 2, . . . ,n},

|Ξ⟩ = α|Ψ⟩ + β|Ω⟩

= α(∑
i,j

eij|μiνj⟩) + β(∑
i,j

fij|μiνj⟩)

=∑
i,j

(αeij + βfij)|μiνj⟩



where

|Ψ⟩ =∑
i,j

eij|μiνj⟩

and

|Ω⟩ =∑
i,j

fij|μiνj⟩.

The tensor product space is denoted by H = H1 ⊗ H2.

Thus

It is computationally convenient to write this as

As an illustration, let us consider Hi = C2, i = 1, 2 and specify the bases 
(|0⟩1, |1⟩1) and (|0⟩2, |1⟩2) for them, respectively.

Let |μ⟩ =√ 2
3 |0⟩1 + 1

√3
|1⟩1, and |ν⟩ = 1

√2
|0⟩2 − 1

√2
|1⟩2.

⟨Ω|Ψ⟩ =∑
p,q
∑
i,j

fpqeij⟨νqup|μiνj⟩

|μv⟩ ≡

mn×1

.

⎛⎜⎝ e1f1

e1f2

⋮
emfn

⎞⎟⎠|μv⟩ = , where f = .

⎛⎜⎝ e1f

e2f

⋮
emf

⎞⎟⎠ ⎛⎜⎝ f1

f2

⋮
fn

⎞⎟⎠



Then 

|μv⟩ =√ 2
3

1
√2

|00⟩12 +√ 2
3 (− 1

√2
)|01⟩12 + 1

√3
1

√2
|10⟩12 + 1

√3
(− 1

√3
)|11⟩12

.

In this illustration,

It is important to note that it is not always possible to express any vector 
|Ξ⟩ ∈ H1 ⊗ H2 in the form |ψ⟩ = |μ⟩ ⊗ |ν⟩ for some |μ⟩ ∈ H1 and |ν⟩ ∈ H2.
As an illustration, we can take H1 = C2, H2 = C2 and {|0⟩1, |1⟩1} and 
{|0⟩2, |1⟩2} as two bases of H1 and H2, respectively. Then |Ξ⟩ = |00⟩ + |11⟩ is
such a vector of the above kind. These states are referred to as non-separable
states. As we will see in the next chapter, such vectors describe ‘quantum
entanglement’ which is the principal resource on which quantum
communication theory stands.

The above concept of tensor product can be extended to any finite number of
linear spaces like H1 ⊗ H2 ⊗ … ⊗ Hk. If n1,n2, … ,nk are dimensions of 
H1, H2, … , Hk, respectively, then the dimension of their tensor product is 
n1.n2 …nk. As an illustration, let Hi = C 2, i = 1, 2, 3. Then 
⊗3

i=1Hi = H1 ⊗ H2 ⊗ H3 has dimension 23 = 8. In this case 
⊗3

i=1Hi = (H1 ⊗ H2) ⊗ H3 = H1 ⊗ (H2 ⊗ H3), mathematically upto
isomorphism. One (of several alternatives) basis consists of 
{|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩}. An example of a vector
that is not separable is

|μ⟩ = |000⟩ + |111⟩

|μv⟩ = = .

⎛⎜⎝√ 2
3

1
√3

⎛

⎝

1
√2

− 1
√2

⎞

⎠

⎛

⎝

1
√2

− 1
√2

⎞

⎠

⎞⎟⎠ ⎛⎜⎝ 1
√3

− 1
√3
1

√6

− 1
√6

⎞⎟⎠



which is referred to as GHZ-state in the representation of a 3-qubit system.

1.4.2 TENSOR PRODUCTS OF OPERATORS

Here we investigate the action of operators on tensor products of Hilbert
spaces. Let H1 and H2 be two Hilbert spaces with bases {|μ1⟩, |μ2⟩, … , |μm⟩}

and {|ν1⟩, |ν2⟩, … , |νn⟩}, respectively. Then, any element of H1 ⊗ H2 is
expressible as

|Ξ⟩ =∑
ij

eij|i⟩ ⊗ |j⟩.

If L and M are two operators acting on H1 and H2, respectively, then the tensor
product L ⊗ M  is defined by the equation

(L ⊗ M)(∑
ij

eij|i⟩ ⊗ |j⟩) =∑
ij

eijL|i⟩ ⊗ M|j⟩.

It is possible to show that any linear operator O acting on H1 ⊗ H2 can be
written as a sum of tensor products of linear operators Li acting on H1 and M j

acting on H2:

O =∑
ij

γijLi ⊗ M j.

The matrix representation of the operator L ⊗ M  in the basis |K⟩ ≡ |μiνj⟩,
labeled by the single index K = 1, 2, … ,mn, is given by the mn × mn

matrix.

L ⊗ M = ,

⎡⎢⎣ L11M L 12M ⋯ AL1mM

L21M L22M ⋯ L2mM

⋮ ⋮ ⋮
Lm1M Lm2M ⋯ LmmM

⎤⎥⎦



where the terms LijM  denote sub-matrices of size n × n, with L and M being
matrix representations of the operators L and M (L and M are m × m and 
n × n matrices, respectively).

1.5 TRACE
For any operator L : H → H, where H is an n-dimensional Hilbert space,

Tr(L)(≡ Trace of L) =
n

∑
i=1

⟨μi|L|μi⟩,

where {|μi⟩, i = 1, 2, … ,n} is an orthonormal basis for H.

The matrix representation of L indicates that the trace is ∑n
i=1 Lii, which is the

sum of all diagonal elements of the representation Ln×n of L.

1.5.1 INVARIANT OF TRACE

A result of profound influence in quantum mechanics is that for any operator 
L : H → H, trace of L is independent of basis. This can be seen through the
following argument.

Let {|μi⟩, i = 1, 2, … ,n} and {|νj⟩, j = 1, 2, … ,n} be two orthonormal
bases for an n-dimensional Hilbert space H.

Then in the basis {|μi⟩}, the trace of L is

Tr(L) =
n

∑
i=1

⟨μi|L|μi⟩

and in basis {|νj⟩}, the trace of L is

Tr(L) =
n

∑
j=1

⟨νj|L|νj⟩.



Now,

In the second step we recall the completeness relation

n

∑
i=1

|μi⟩⟨μi| = I.

This indicates that the tr (L) is independent of basis.

We also have the following result:

Tr(LM) = Tr(ML).

Let L and M be two operator from an n-dimensional Hilbert space H to H. Also
let {|μi⟩, i = 1, . . . ,n} be an orthonormal basis for n-dimensional Hilbert
space H. Then

Tr(L) =
n

∑
i=1

⟨μi|L|μi⟩.

By applying the same relation for the basis, {|μj⟩}, we have

Tr(L) =
n

∑
j=1

⟨νj|L|νj⟩

=
n

∑
j=1

n

∑
i=1

⟨νj|μi⟩⟨μi|L|νj⟩

=
n

∑
i=1

n

∑
j=1

⟨μi|L|νj⟩⟨νj|μi⟩

=
n

∑
i=1

⟨μi|L|μi⟩.



It is important to see that although LM ≠ ML in general, their traces have
equal values.

1.5.2 PARTIAL TRACE

Let D be any operator acting on HL ⊗ HM  where HL and HM  are m and n
dimensional Hilbert spaces, respectively. Then the partial trace of D over HM ,
denoted DL, is given by

DL ≡ TrMD =∑
j

(I ⊗ ⟨j|)D(I ⊗ |j⟩),

where |j⟩ is any orthonormal basis for the Hilbert space HM .

From the above compactly written expression, if

where L1α and L2α are operators on HA and HB, respectively, we have,

Tr(LM) =∑
i

⟨μi|LM|μi⟩

=∑
i

∑
j

⟨μi|L|μj⟩⟨μj|M|μi⟩

=∑
j

∑
i

⟨μj|M|μi⟩⟨μi|L|μj⟩

=∑
j

⟨μj|ML|μj⟩

= Tr(ML)

D =∑
α

L1α ⊗ L2α

DL =∑
α

L1α∑
J

⟨j|L2α|j⟩

=∑
α

L1αTr(L2α).



In particular, if D = L1 ⊗ L2, then we have the partial trace 
DL = Tr(L2).L1.

Similarly, the partial trace of D over HL, denoted DM , is given by

DM ≡ TrLD =∑
i

(⟨i| ⊗ I)D(|i⟩ ⊗ I),

where |i⟩ is any orthonormal basis for the Hilbert space HL.

By taking a partial trace over HM , sometimes called ‘tracing over HM ’ we
exclude all the variables related to HM . It is an important operation,
particularly in quantum communication protocols performed in noisy
environments. We will be dealing with partial trace operations more in Chapter
5.



2 Classical Bits and
Classical Gates

DOI: 10.1201/9781003561439-2

2.1 INTRODUCTION
In this chapter, a review of concepts of classical bits and gates. It is required
for a correlation with the corresponding quantum concepts given in later
chapters. References [54, 55, 147, 155] are useful for an in-depth study on
the subjects of the chapter.

2.2 BITS AND BOOLEAN ALGEBRA
A bit or a classical bit as we call it here is the basic unit of classical
information, which is realized in practice by different sorts of binary
devices. We require classical bits in the communication protocols that we
describe in the second part of the book for the purpose of classical
assistance which is inevitably necessary in these protocols. A bit has two
states that can be described by any two different symbols. In particular, they
are often denoted by 0 and 1. The mathematical structure to describe and
manipulate single bits is the Boolean Algebra. There are three basic
operations on these two states which are given in the structure of a Boolean
Algebra. Formally, a Boolean Algebra is an algebraic structure (B, ∨, ∧,′ )

https://doi.org/10.1201/9781003561439-2


where B = {0, 1}, ∨ and ∧ are binary operations on B and ‘′’ is a unitary
operation on B described in Table 2.1.

Table 2.1

Truth tables for OR (a ∨ b

), AND (a ∧ b), and NOT
(a′) operations ⏎

a b a ∨ b

0 0 0

0 1 1

1 0 1

1 1 1

2.1 (a)

a b a ∧ b

0 0 0

0 1 0

1 0 0

1 1 1

2.1 (b)

a a′

0 1

1 0

2.1 (c)

The general mathematical definition of Boolean Algebra is wider than the
above. What is described above is to serve our purpose here.



2.3 CLASSICAL GATES
Logic gates are operations in which an n-bit input is provided to recover an
m-bit output. This is given symbolically as {0, 1}n → {0, 1}m. The above
correspondence is also referred to as a Boolean operation. We describe
some logical gates namely, NOT, AND, OR, and XOR gates, along with
their symbols in the following figures.

1. NOT gate: A NOT gate inverts the input signal. It is a unary operator,
which means that it operates on a single input. The truth table and
circuit diagram for the NOT gate are shown in Figure 2.1.

2. AND gate: An AND gate performs the binary operation ‘∧’ between
two bits. The truth table and circuit diagram for the AND gate are
shown in Figure 2.2.

3. OR gate: An OR gate performs the binary operation ‘∨’ between two
bits. The truth table and circuit representation for the OR gate are
shown in Figure 2.3.

4. XOR gate: An XOR gate performs the operation 
a ⊕ b = a + b (mod 2). The corresponding truth table and circuit
diagram for the 2-input XOR gate are given in Figure 2.4.

Figure 2.1  The truth table and symbol for NOT gate. ⏎



Figure 2.2  The truth table and symbol for AND gate. ⏎

Figure 2.3  The truth table and symbol for OR gate. ⏎

Figure 2.4  The truth table and symbol for 2-input XOR gate. ⏎

2.4 UNIVERSAL GATES



A universal set of gates consists of those gates by which any Boolean
operation {0, 1}n → {0, 1}m can be constructed. An example of such a set
of universal gates is {NAND,NOR}. These two gates are described in
the following two figures.

1. NAND gate: It is a combination of a NOT gate and an AND gate
which performs the operation (a ∧ b)

′ between two bits. The
corresponding truth table and the circuit diagram for the NAND gate
are given in Figure 2.5.

2. NOR gate: It is an combination of NOT gate and OR gate which
performs the operation (a ∨ b)

′. The corresponding truth table and
circuit diagram for the NOR gate are given in Figure 2.6.

Figure 2.5  The truth table and symbol for NAND gate. ⏎



Figure 2.6  The truth table and symbol for NOR gate. ⏎

It may be noted that the set of universal gates is not unique. There may be
several collection of gates acting as set of universal gates.
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3.1 INTRODUCTION
This chapter contains concepts from quantum physics which are essential for the
understanding of the teleportation protocols. Qubit system is discussed separately along
with the laws of its evolution. Quantum gates and quantum circuits are described. The
description is limited to the technical and conceptual requirements for understanding the
materials in the book. For an extensive appraisal of the topics included in this chapter, [6,
12, 15, 32, 35, 55, 77, 81, 107, 113, 117, 134, 139, 140, 149, 163, 171] are helpful
references.

3.2 POSTULATES OF QUANTUM MECHANICS
In this section we describe the basic principles of quantum mechanics in the form of
postulates. This approach is conventional in the study of quantum mechanics.

Postulate 1:

The state of a quantum system is described by a ket vector which is an element |ℵ⟩ of an
appropriate Hilbert space H. The space H is a mathematical description of the quantum
system. A state of a quantum system is described by a ket |ℵ⟩ up to a non-zero scalar
multiple, that is, |ℵ⟩ and c|ℵ⟩ indicate the same quantum state. The zero ket does not
represent any quantum state. If there are two quantum states |ℵ1⟩ and |ℵ2⟩, then (
g1|ℵ1⟩ + g2|ℵ2⟩) is also a state for arbitrary choices of g1 and g2 provided not both are
zero. If a state |ℵ⟩ is such that ⟨ℵ|ℵ⟩ = 1, then we say that |ℵ⟩ is normalized state.

https://doi.org/10.1201/9781003561439-3


In particular, |ℵ⟩ and eiϕ|ℵ⟩ denote the same state which is that in ket representation the
phase factor eiϕ is ignored. Physically it means that the phase has no observable
consequences.

Postulate 2:

For every observable physical attribute pertaining to a physical system there exists a
Hermitian operator on the Hilbert space describing that system whose eigenvalues are the
possible observed values for the physical observable.

It follows that the eigenvalues of a Hermitian operator being always real, the observed
values of an attribute of the physical system is also real.

Our consideration is limited to systems described by finite-dimensional Hilbert space in
which case we have a set of distinct eigenvectors {|ϱ1⟩, |ϱ2⟩, … , |ϱn⟩} of the Hermitian
operator corresponding to the physical observable which forms an orthonormal basis of the
Hilbert space.

Postulate 3:

Measurement in a quantum system described by a Hilbert space H is described by a set of
operators {M1, M2, … , Mk} satisfying the completeness relation

k

∑
i=1

Mi
†Mi = I,

where ‘i’ refers to the possible measurement outcome. The operators M ′
i s are called

measurement operators. If the system is given by |ℵ⟩ assumed to be normalized, and the
measurement is performed on |ℵ⟩, then the outcome ‘i’ occurs with probability given by

p(i) = ⟨ℵ|Mi
†Mi|ℵ⟩

in which case the state after the measurement reduces to Mi|ℵ⟩.

The above is the most general description of quantum measurement. We will require
mainly projective measurement in our protocols, which is elaborately described in the
subsequent section. Occasionally, we will require Positive Operator Valued Measurement
or POVM operators.



In a POVM measurement the corresponding set of operators {Q1, . . . , Qn} need not be
idempotent as in the case of projective measurement described subsequently. They are
supposed to satisfy the following assumptions for all i,

1. Qi = Q
†
i  (Hermitian)

2. Qi ≥ 0 (Positive semi-definite)

3. ∑n
i=1 Qi = I

If H describes a quantum system, and |Ξ⟩, |Ω⟩ are two arbitrary ket vectors in H, then

forms a specific example of the above type measurement.

If {|ϱ1⟩, |ϱ2⟩, . . . , |ϱn⟩} forms an orthonormal basis of the Hilbert space H describing a
system, then {|ϱ1⟩⟨ϱ1|, |ϱ2⟩⟨ϱ2|, . . . , |ϱn⟩⟨ϱn|} describes a set of measurement operators.
A corresponding measurement is also known as measurement in the basis 
{|ϱ1⟩, |ϱ2⟩, . . . , |ϱn⟩}. We will discuss more about it in the context of projective
measurements in Section 3.4.

By a closed quantum system we mean a system which is free from interaction with the
outside environment.

Postulate 4:

The time evolution of a closed quantum system is unitary which means that whenever a
quantum system is specified by a ket |ℵ(t0)⟩ at time t0 and by a ket |ℵ(t1)⟩ at time t1 > t0,
both belonging to the Hilbert space H describing the system, there exists a unitary operator
U(t1, t0) on H such that

|ℵ(t1)⟩ = U(t1, t0)|ℵ(t0)⟩.

From the above postulate it follows that we can only apply unitary operators to transform a
closed quantum system state to some other state. If it is impossible to construct such an
operator for a proposed transformation, then it is impossible to physically carry out that
transformation. One important implication of the above rule is that the inner product of the

Q1 = (I − |Ξ⟩⟨Ξ|)

Q2 = (I − |Ω⟩⟨Ω|)

Q3 = I − Q1 − Q2



ket vectors are not altered, that is, under the unitary evaluation |ℵ⟩ → U |ℵ⟩ of the system,
when |τ1⟩ evolves to |τ1

′⟩ = U |τ1⟩ and |τ2⟩ evolves to |τ2
′⟩ = U |τ2⟩. We have

⟨τ2
′|τ1

′⟩ = ⟨τ2|U †U |τ1⟩ = ⟨τ2|τ1⟩.

The above observation has important consequences in quantum mechanics.

It is immediate from the postulates of quantum mechanics that the measurement of an
observable inherently produces uncertain results having a probability distribution.

The expectation value (which is the average value in the probabilistic situation) of an
observable A when the system is in the normalized state |ℵ⟩ is given by

⟨A⟩ = ⟨ℵ|A|ℵ⟩.

This is demonstrated in the following case where A has eigenvalues ϱi with corresponding
normalized eigenvectors |ϱi⟩, i = 1, 2, . . , n assumed for simplicity to be all distinct. Then

A =
n

∑
i=1

ϱi|ϱi⟩⟨ϱi|.

Let |ℵ⟩ = ∑n
i=1 ci|ϱi⟩ where ∑n

i=1 |ci|2 = 1. Therefore

⟨A⟩ =
n

∑
i=1

ϱi|ci|
2.

The uncertainty associated with A is given by the fact that the measurement of A is
associated with the set of measurement operators {|ϱi⟩⟨ϱi|, i = 1, . . . , n} which yields the
value ϱi with probability.

The uncertainty in the measurement of the observable A is defined as

△A = ⟨(A − ⟨A⟩)2⟩
1
2 ,

where the expectation value is described above.

The uncertainties pertaining to the measured values of two operators A and B are related
by the relation

△A.△B ≥
|⟨ℵ|(AB − BA)|ℵ⟩|

2
.



The above result is the famous Heisenberg's uncertainty principle. We will not explicitly
use it anywhere in this text. But it is to be kept in mind that this principle is present
implicitly in the backdrop of every discussion on quantum mechanics.

3.3 THE QUBIT SYSTEM
A qubit is the simplest quantum system, which is described by a 2-dimensional Hilbert
space. It is the quantum counterpart of the classical bit, which is popularly known as ‘bit’
amongst computer scientists. Qubits are structurally fundamental blocks of quantum
information. The basic difference between a ‘bit’ and a ‘qubit’ is that whereas a bit can
assume one of two given values, customarily written as 0 and 1, a qubit can be in a
combination (superposition) of two states producing one of the two states with certain
probabilities only when observed. A ‘bit’ can be described by a ‘Boolean algebra’ 
{{0, 1}, +, . } with two algebraic operations whereas a ‘qubit’ can be described by a linear
space (of dimension 2) where superposition of the elements is allowable. This is why the
mathematical treatment of ‘bit’ and ‘qubit’ are different. The physical realizations of these
two concepts also differ accordingly. In the case of a ‘bit’, two-level devices like on-off
switches, two-level voltage systems, etc. are sufficient for a physical realization. In the
case of ‘qubit’ physical systems admitting of superposition are required. They include
polarization states of a photon, spin states of a spin- 1

2  particle, ground and first excited
states of an atom, etc. From the standpoint of technology, physical realization and
maneuvering of qubits are more complicated than bits.

3.3.1 SINGLE-QUBIT AND ITS REPRESENTATION

As an element of the 2-dimensional Hilbert space H2 or equivalently C2, a qubit is
described by

|ℵ⟩ = g1|0⟩ + g2|1⟩

where {|0⟩, |1⟩} is an orthonormal basis of H2, where g1, g2 are complex numbers.

Since the representation of a quantum system is given by a ‘ket’ vector up to a scalar
multiplication (see Section 3.1), there is no loss of generality to assume that 
|g1|2 + |g2|2 = 1, in which case we say that the state |ℵ⟩ is normalized.



Further, from the above consideration, |ℵ⟩ is also independent of an overall (unobservable)
phase factor. This allows us to represent a qubit as

|ℵ⟩ = cos(
κ

2
)|0⟩ + eiϕsin(

κ

2
)|1⟩

when 0 ≤ κ, ϕ ≤ 2π.

The above expression of an arbitrary qubit state |ℵ⟩ allows us to represent it on a sphere
called the Bloch sphere. Figure 3.1 shows the Bloch sphere representation of a single-qubit
pure state.

Figure 3.1  Single qubit state representation using Bloch sphere. ⏎

It is important to observe that the Bloch sphere should not be confused with the usual 3-
dimensional the sphere. For instance, the orthogonal states |0⟩ and |1⟩ are represented by



points along z − axis, but in opposite directions which is not the case with a 3-
dimensional sphere.

3.3.2 SYSTEMS CONSISTING OF N-QUBITS

Let there be n qubits represented by n number of 2-dimensional Hilbert spaces 
H1,H2, … ,Hn having bases {|0⟩1, |1⟩1}, {|0⟩2, |1⟩2}, … , {|0⟩n, |1⟩n}, respectively.
Then the composite system of these n-qubits is described by H1 ⊗ H2 ⊗ ⋯ ⊗ Hn.

It has an orthonormal basis consisting of 2n elements given by

{|j1 … jn⟩ : ji = 0, 1; i = 1, 2, … , n}.

The above basis is known as computational basis.

A state of the composite system is given by a linear combination of the 2n states mentioned
above. Thus an arbitrary n− qubit state is given by

|ℵ⟩ =
2

∑
j1=1

2

∑
j2=1

⋯
2

∑
jn=1

aj1…jn
|j1 … jn⟩.

If ∑2
j1=1 ∑

2
j2=1 ⋯∑2

jn=1 |aj1 ⋯ jn|2 = 1, then the state is said to be normalized. After
performing a measurement on the basis mentioned above, the state |js1 ⋯ jsn

⟩ is obtained
with probability |ajs1

⋯jsn
|2.

As an illustration, in the case of n = 3, the computational basis of a 3-qubit system is 
{|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩}. A state of the composite 3-qubit
system, for instance, described by

g1|000⟩ + g2|101⟩ + g3|110⟩.

For a two-qubit system the most general two-qubit state is given by

|ℵ⟩ = g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩.

The state is normalized when the condition |g1|2 + |g2|2 + |g3|2 + |g4|2 = 1 is satisfied.

If we measure the system in the basis {|00⟩, |01⟩, |10⟩, |11⟩}, we obtain the state |00⟩ with
probability |g1|2, |01⟩ with probability |g2|2, |10⟩ with probability |g3|2 and |11⟩ with
probability |g4|2.



Of particular importance are the following 2-qubit states and 3-qubit states known as Bell
states given by

(3.1)

and 3-qubit states known as Greenberger–Horne–Zeilinger (GHZ)-states given by

(3.2)

The above-mentioned states (3.1) constitute the Bell basis which is an orthonormal basis
for the 2-qubit system.

3.3.3 EVOLUTION OF A QUBIT SYSTEM

As in the general case of a quantum system, the evolution of an n-qubit system is realized
by a unitary operator on the system. The evolution is given schematically as

|Υ1⟩ =
1

√2
|00⟩ +

1

√2
|11⟩,

|Υ2⟩ =
1

√2
|00⟩ −

1

√2
|11⟩,

|Υ3⟩ =
1

√2
|01⟩ +

1

√2
|10⟩,

|Υ4⟩ =
1

√2
|01⟩ −

1

√2
|10⟩.

|ς1⟩ =
|000⟩ + |111⟩

√2
, |ς2⟩ =

|000⟩ − |111⟩

√2
,

|ς3⟩ =
|001⟩ + |110⟩

√2
, |ς4⟩ =

|001⟩ − |110⟩

√2

|ς5⟩ =
|010⟩ + |101⟩

√2
, |ς6⟩ =

|010⟩ − |101⟩

√2
,

|ς7⟩ =
|011⟩ + |100⟩

√2
, |ς8⟩ =

|011⟩ − |100⟩

√2



Since U −1 exists for a unitary operator, the evolution is always reversible. Thus any
operation on an (isolated) n-qubit system is always reversible. We will discuss the other
case where the system is non-isolated (noisy) in the next chapter.

Evolution of 1-qubit

Particularly we have the evolution of 1-qubit by application of three Pauli operators given
by

In the matrix representation with respect to the basis {|0⟩ = ( ), |1⟩ = ( )}, we have

the usual form of Pauli matrices

These are referred to as Pauli gates or X-gate, Y-gate and Z-gate, respectively. Throughout
the book we extensively use the above notations of Pauli operators and Pauli matrices.

The identity operator

is trivially a unitary operator.

Also we have the Hadamard gate given by

ϑx = |0⟩⟨1| + |1⟩⟨0|,

ϑy = −i|0⟩⟨1| + i|1⟩⟨0|,

ϑz = |0⟩⟨0| + |1⟩⟨1|.

1

0

0

1

X = ϑx = ( ),

Y = ϑy = ( ),

Z = ϑz = ( ).

0 1

1 0

0 −i

i 0

1 0

0 −1

I = |0⟩⟨0| + |1⟩⟨1| ≡ ( )1 0

0 1

H|0⟩ =
1

√2
(|0⟩ + |1⟩) ,

H|1⟩ =
1

√2
(|0⟩ − |1⟩),



which has the matrix representation in the computational basis as

The phase-shift gate is defined as

Considering the representation of the 1-qubit state in Section 3.2.1, we have

It indicates the change in the relative phase.

The above are some examples of operators which describe 1-qubit evolution.

Evolution of qubit systems:

We consider a system of n-qubits q1, q2, … , qn individually represented by Hilbert spaces 
H1,H2, … ,Hn. Then the composite system is given by H1 ⊗ H2 ⊗ ⋯ ⊗ Hn. The
evolution of the composite system is described by ℵ → Uℵ where U is a unitary operator.
In particular, if U1, U2, … , Un are unitary evolution operators for the qubits q1, q2, … , qn,
respectively, then the evolution of the composite system is given by

ℵ → (U1 ⊗ U2 ⊗ ⋯ ⊗ Un)ℵ.

As an illustration, we consider the Bell-state |Υ3⟩q1q2 = 1
√2

(|10⟩ + |01⟩)q1q2 . When the

qubit q1 is operated with ϑx and the qubit q2 is operated with ϑz, then the Bell-state |Υ3⟩q1q2

evolves into

H =
1

√2
( ).

1 1

1 −1

Rz(δ) = ( ).
1 0

0 eiδ

Rz(δ)( ) = ( ).
cos κ

2

eiϕsin κ
2

cos κ
2

ei(ϕ+δ)sin κ
2

(ϑx ⊗ ϑz)(
1

√2
(|10⟩ + |01⟩)) =

1

√2
(ϑx|1⟩ ⊗ ϑz|0⟩ + ϑx|0⟩ ⊗ ϑz|1⟩)

=
1

√2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ (−)|1⟩)

=
1

√2
(|00⟩ − |11⟩).



3.4 THE RELATION BETWEEN BITS AND QUBITS
Both bits and qubits when measured yield one of the two possible states usually denoted
by 0 and 1 for bits and |0⟩ and |1⟩ for the case of qubits. The difference is that a bit is in a
definite state 0 or 1 at any time (and hence prior to the measurement) and a measurement
on it can be performed without affecting the state of the qubit, whereas a measurement on
a qubit (generally) affects its state, yielding |0⟩ or |1⟩ with some probability. Prior to the
measurement a qubit is in a superposed state of |0⟩ and |1⟩. The mathematics of
superposition is required to describe a qubit which is supplied by a Hilbert space. From a
mathematical point of view this is fundamental in understanding the difference between a
bit and a qubit. Further, the dynamics of a qubit is subject to the laws of quantum
mechanics. As a consequence, the changes (except by measurement) of qubit systems are
unitary in general which are reversible. Along with qubits, classical bits are also necessary
participants in teleportation processes.

3.5 PROJECTIVE MEASUREMENT
A measurement is a Projective measurement of M ′

i s are projection operator with 
MiMj = 0 if i ≠ j.

As an illustration, we consider a spin- 1
2  system described by a 2-dimensional Hilbert

space H2 having as basis elements |↑⟩ and |↓⟩, physically describing spin up and spin
down states with respect to a fixed direction in space. Let us consider a projection
measurement {M1, M2} where M1 = | ↑⟩⟨↑| and M2 = | ↓⟩⟨↓| is performed on the state 
|ℵ⟩ = g1| ↑⟩ + g2| ↓⟩. Then we obtain spin up as our measurement result with probability 
⟨ℵ|(| ↑⟩⟨↑ |)(| ↑⟩⟨↑ |)|ℵ⟩ = |g1|2. In this case the state |ℵ⟩ of the system reduces to g1| ↑⟩

which, when normalized, is the same as g1

|g1|2 | ↑⟩.

By a similar consideration we obtain spin down as the measurement result with probability
|g2|2 with the state |ℵ⟩ being reduced to g2

|g2|2 | ↓⟩.

We sometimes talk of measuring in a basis of the Hilbert space corresponding to the
quantum system. This practice is very often adopted in this book. The following is the
explanation of the above.

If {|ϱ1⟩, |ϱ2⟩, … , |ϱn⟩} is an orthonormal basis of H, then {M1, M2, … , Mn} with 
Mi = |ϱi⟩⟨ϱi| constitutes a set of Projective measurement operators. Measuring with them



is referred to as measuring in the basis {|ϱ1⟩, |ϱ2⟩, … , |ϱn⟩}.

A Hermitian operator A has associated with it an orthonormal basis {|ϱ1⟩, |ϱ2⟩, … , |ϱn⟩}

consisting of its distinct eigenvectors. Conversely, given an orthonormal basis, we can
always associated A Hermitian operator, that is to say, a physical observable. Thus to
measure an observable is the same as measuring in a basis.

3.6 QUANTUM GATES AND CIRCUITS
Quantum gates are unitary operators which act on the quantum states. One important
difference between a quantum and a classical gate is that the action of most classical gates
is irreversible, but for quantum gates, it is reversible. Quantum gates are represented by
unitary operators on Hilbert spaces. Quantum gates are constituting elements of quantum
circuits. They are sometimes (but not always) counterparts of Boolean gates in the
Boolean circuit theory. Further discussion on their extremely important utility will drift us
away from our objective in this book. We restrict ourselves to the extent to which they are
used in teleportation protocols we discuss in the present context. Nevertheless they are
relevant in the fabrication of the quantum entanglements we use as quantum channels in
the protocols. We will mention in the passing how entanglement can be generated by the
application of quantum circuits.

By their very definitions the quantum gates are reversible quantum operations. This
reversibility is crucial in quantum information theory.

3.6.1 UNITARY GATES

In the matrix representation, a unitary gate U acting on a n-qubit system is a 2n × 2n

unitary matrix. Unitary matrices preserve the norm of the quantum state which is crucial
for maintaining the probabilistic interpretation of quantum mechanics. When a unitary gate
U acts on an arbitrary state |ℵ⟩ of a qubit, the transformed quantum state |ℵ′⟩ is given by

|ℵ′⟩ = U |ℵ⟩.

Further, the existence of U ensures the existence of U −1, that is,

|ℵ⟩ = U −1|ℵ′⟩.

It has the following visual representation:



A general unitary gate U acting on a single qubit is capable of being represented as a 2 × 2

complex unitary matrix. Given the constraint U †U = I, such a matrix can always be
written as:

where the condition |g1|2 + |g2|2 = 1 is satisfied.

The following are some types of quantum gates:

1. Pauli Gates: There are three Pauli gates which are Pauli-X gate, Pauli-Y gate, and
Pauli-Z gate. These are single-qubit gates and perform rotations around the Bloch
sphere's X,Y, and Z axes, respectively. The Pauli gates and their gate notations are the
following:

Any 2 × 2 unitary matrix can be expressed as a linear combination of Pauli gates and
the identity gate. Also, any rotation on the Bloch sphere can be shown as composed
of Pauli matrices.

2. Hadamard Gate: It is a single-qubit gate transforming the states |0⟩ and |1⟩ to 
1

√2
(|0⟩ + |1⟩) and 1

√2
(|0⟩ − |1⟩), respectively. Its action creates an equal

superposition of |0⟩ and |1⟩. The matrix representation and the gate notation are
given respectively as

U = ( ),
g1 g2

−g
∗
2 g

∗
1

X = ( ) −− −−,
0 1

1 0
X

Y = ( ) −− −−,
0 −i

i 0
Y

Z = ( ) −− −−.
1 0

0 −1
Z

H =
1

√2
( ) −− −−.

1 1

1 −1
H



3. Phase Gates: It creates a phase shift of qubits. An instance of a phase gate is the S
gate which adds a phase of π

2  to the quantum state |1⟩ while keeping the state |0⟩
unchanged. The matrix representation and notation of the S gate are

4. Controlled gates: Controlled gates are two-qubit gates that act with a control qubit.
A qubit is called target qubit whose state depends on the state of another qubit known
as the control qubit.
One example of Controlled gates is the Controlled-NOT(CNOT) gate, which flips the
state of the target qubit if the control qubit is in |1⟩ state, and keeps it unchanged
otherwise. Matrix representation and notation of CNOT gate are given as

Another example of a controlled gate is the controlled-Z gate, or (CZ) gate, which is
the following

5. SWAP Gate: The SWAP gate is a two-qubit gate whose action is to exchange the
states of two qubits. Its matrix representation and notation are the following

S = ( ), −− −−.
1 0

0 i
S



3.6.2 QUANTUM CIRCUIT

A quantum circuit is a quantum analogue of a classical circuit. It represents a process
performed on qubits. A circuit diagram represents operations sequentially performed on
qubits. It consists of qubits, quantum gates, measurements, and wires for connecting qubits
to other components.

Typically, an illustrative quantum circuit for entangled state 
1

2√2
(|00010⟩ + |00100⟩ + |11010⟩ + |11100⟩ + |00011⟩ − |00101⟩ − |11011⟩ + |11101⟩)

is given in Figure 3.2.

Figure 3.2  Circuit generation of entangled state. ⏎

In the Figure 3.2,



Quantum circuits for several purposes are constructed in the following chapters.



4 Entanglement
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4.1 INTRODUCTION
This chapter deals with the concept of quantum entanglement which is the most
precious resource in quantum communication science. Some topics on
entanglement including construction of circuits for entanglement generation are
presented. The materials presented here are limited by their requirements in the
protocols presented here. Books and review articles [36, 37, 106, 113, 134, 139,
140] contain different aspects of quantum entanglement.

4.2 QUANTUM CORRELATION
Quantum correlations are fundamental concepts for the understanding of the
phenomena of quantum entanglement. Two quantum systems can have correlation
even if they are separated by arbitrarily large distances. This is completely
quantum in nature having no corresponding classical counterpart. The concept of
such correlation first appeared in the famous EPR paper by Einstein, Podolsky, and
Rosen published in 1935, albeit in a different context. It is nonlocal in nature. It is
the central theme in use in the domain of quantum technology. Particularly,
entanglement forms the main quantum resource in quantum communication
schemes like the teleportation protocol.

Entanglement is inseparability between two quantum systems. If two quantum
systems A and B are represented by Hilbert spaces HA and HB, then the state of
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the composite system AB is given by |Ξ⟩ ∈ HA ⊗ HB. If it is impossible to
express

|Ξ⟩ = |Ξ1⟩A ⊗ |Ξ2⟩B

for |Ξ1⟩A ∈ HA and |Ξ2⟩B ∈ HB, then the system is entangled and the state |Ξ⟩ is
called an entangled state.

As an illustration, we consider two qubits A and B such that the composite 2-qubit
system is given by one of the Bell states described in Section 3.2.2,

|Υ1⟩AB =
1

√2
(|0⟩A|0⟩B + |1⟩A|1⟩B).

It is an entangled state of two qubits which can be seen in the following:

If possible, let |Υ1⟩AB = |Υ1A⟩ ⊗ |Υ1B⟩ where |Υ1A⟩ = g1|0⟩A + g2|1⟩A and 
|Υ1B⟩ = g3|0⟩B + g4|1⟩B.

Then |Υ1⟩AB = g1g3|0⟩A|0⟩B + g1g4|0⟩A|1⟩B + g2g3|1⟩A|0⟩B + g2g4|1⟩A|1⟩B.

Comparing the two expressions of |Υ1⟩AB, we have g1g3 = 1
√2

, g1g4 = 0, 

g2g3 = 0 and g2g4 = 1
√2

. The above four equations are inconsistent, implying

thereby that the state |Υ1⟩AB is an entangled state. It can be similarly proved that
all four Bell states are entangled.

4.3 MULTI-QUBIT ENTANGLED STATES
A multipartite system is a combination of more than two individual systems. If
these are p(> 2) systems described through Hilbert spaces H1, . . . ,Hp, then the
composite of these systems is a multipartite systems which is described by 
H = H1⊗. . . ⊗Hp. A state of the system |Ξ⟩ is a member of H. If it is impossible
to write (mathematically upto isomorphism)

|Ξ⟩ = |Ξ1⟩ ⊗ |Ξ2⟩



where |Ξi⟩ belongs to the tensor product of ni number of Hilbert spaces collected
from H1, . . . ,Hn, being all distinct, i = 1, 2 and n1 + n2 = n, then we have a
multipartite entangled state |Ξ⟩. It may be noted that some constituent states of |Ξ⟩

may have entanglement amongst themselves. As an illustration, a 3-qubit state

|0⟩1 ⊗ |0⟩2 ⊗ |1⟩3 + |0⟩1 ⊗ |1⟩2 ⊗ |0⟩3 + |1⟩1 ⊗ |0⟩2 ⊗ |0⟩3

customarily written as |001⟩ + |010⟩ + |100⟩, is an entangled state.

On the contrary, the state of 3-qubits

|Ξ⟩ = |0⟩1 ⊗ |0⟩2 ⊗ |1⟩3 + |0⟩1 ⊗ |1⟩2 ⊗ |0⟩3 + |1⟩1 ⊗ |0⟩2 ⊗ |0⟩3

is not entangled since we can write |Ξ⟩ = |Ξ1⟩ ⊗ |Ξ2⟩ where 
|Ξ1⟩ = |0⟩1 ⊗ |1⟩2 + |1⟩1 ⊗ |0⟩2 and |Ξ2⟩ = |0⟩3.

It may be noted that the part |Ξ1⟩ is an entangled state which is an unnormalized
Bell state.

4.4 MAXIMALLY ENTANGLED STATES
There are several measures of entanglement on the basis of which we can say
whether a state is more entangled than the other. In particular, we can speak of a
maximally entangled state. In this section, we only discuss the issue of maximal
entanglement in a bipartite system based on the Schmidt decomposition. For the
concept of maximal entanglement in a multipartite system, we require density
matrices. This part will be taken up in Chapter 5.

If there are two quantum systems 1 and 2 described mathematically by Hilbert
spaces H1 and H2 of dimensions d1 and d2, respectively, then for a state 
|Ξ⟩ ∈ H1 ⊗ H2 it is possible to find bases {|μ1⟩, . . . , |μd1

⟩} and {|ν1⟩, . . . , |νd2
⟩}

of H1 and H2, respectively such that

|Ξ⟩ =
d

∑
i=1

ci|μi⟩ ⊗ |νi⟩



where d = min{d1, d2}.

The state is entangled only if more than one of ci s are non-zero.

The state |Ξ⟩ is maximally entangled if c1 =. . . = cd = 1
d

 where |Ξ⟩ is
normalized.

It may be immediately seen that the Bell states are maximally entangled in view of
the above consideration.

4.5 CIRCUITS FOR ENTANGLEMENT GENERATION
In this section, we present some quantum circuits for generating entangled states,
as shown in Figures 4.1 to 4.4. The constructions of circuits are self-explanatory.
We explain the generation through the circuits in Figure 4.4 as a representative
case.

Figure 4.1  Circuit diagram of Bell-state 1
√2

(|00⟩ + |11⟩). ⏎

Figure 4.2  Circuit diagram of GHZ state 1
√2

(|000⟩ + |111⟩).



Long Description for Figure 4.3

Figure 4.3  Circuit generation of entangled state 
1

2√2
(|0101010⟩ + |0101101⟩ + |0110011⟩ + |0110100⟩ + |1001011⟩ + |1001100⟩ + |1010010⟩ + |1010101⟩)

.



Figure 4.4  Quantum Circuit generation for the entangled state |E⟩Q1Q2Q3Q4Q5  given in Eq. (4.1). ⏎

Now we describe step-by-step circuit generation for an entangled five-qubit cluster
state given in Figure 4.4 in detail given by

|E⟩Q1Q2Q3Q4Q5
=

1

2
(|00000⟩ + |01011⟩ + |10100⟩ − |11111⟩).

(4.1)

Step 0: A five-qubit state is prepared from a five (|0⟩) zero initial state which is
given by

|E0⟩Q1Q2Q3Q4Q5 = |0⟩Q1 ⊗ |0⟩Q2 ⊗ |0⟩Q3 ⊗ |0⟩Q4 ⊗ |0⟩Q5 .

Step 1: Now, first a Hadamard gate is applied on qubit Q1 and then a controlled-
NOT gate is applied with qubit Q1 as control qubit and qubit Q2 as target qubit.
Then the initial state |E0⟩ is transformed into the state

|E1⟩ =
1

√2
(|00000⟩ + |11000⟩)

Q1Q2Q3Q4Q5

.

Step 2: Again, a Hadamard gate is applied to the qubit Q2 and then the state |E1⟩

evolves into the state

|E2⟩ =
1

2
(|00000⟩ + |01000⟩ + |10000⟩ − |11000⟩)

Q1Q2Q3Q4Q5

.

Step 3: Next, a controlled-NOT gate is applied with qubit Q1 as the control qubit
and qubit Q3 as the target qubit. Then the state |E2⟩ becomes

|E3⟩ =
1

2
(|00000⟩ + |01000⟩ + |10100⟩ − |11100⟩)

Q1Q2Q3Q4Q5

.

Step 4: Lastly, two controlled-NOT gates are applied with qubit Q2 as the control
qubit for each of the qubits Q4 and Q5, respectively, as target qubits. Then the state
|E3⟩ is transferred to

1



|E4⟩ =
1

2
(|00000⟩ + |01011⟩ + |10100⟩ − |11111⟩)

Q1Q2Q3Q4Q5

,

which is the same as |E⟩Q1Q2Q3Q4Q5  given in Eq. (4.1).



5 Density Matrix
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5.1 INTRODUCTION
The chapter presents some aspects of the density matrix theory. The topics
include the necessity of density matrix formalism and reduced density matrices
by partial trace operation. References [10, 38, 113, 115, 125, 126, 145] contain
several aspects of density matrix theory.

5.2 NECESSITY OF DENSITY OPERATOR
Density operator is a mathematical instrument that is a generalization of the
idea of a ket vector. It combines classical information with quantum
information and is suitable for the description of many physical systems for
several practical purposes.

The idea originates from the observation that an element |Ξ⟩ of a Hilbert space 
H representing a quantum system can be associated in a one-to-one
correspondence with a Hermitian operator |Ξ⟩⟨Ξ| acting on H. A ket |Ξ⟩

describes the state of a quantum system which is a member of the Hilbert space
Hn of dimension n describing the system. This can be described alternatively
by a linear operator |Ξ⟩⟨Ξ| on the same Hilbert space Hn defined by

(|Ξ⟩⟨Ξ|)|ℵ⟩ = ⟨Ξ|ℵ⟩|Ξ⟩
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(5.1)

Mathematically, the correspondence |Ξ⟩⟨Ξ| ↔ |Ξ⟩ is an isomorphism for the
case of finite-dimensional Hilbert spaces. The operator ϖ = |Ξ⟩⟨Ξ| is called
the density operator for the quantum state. But there can be other operators on 
H which also describe quantum systems. As an illustration, we consider the
situation where there are quantum states |Ξα⟩ with probabilities pα for |Ξα⟩ to
be obtained in a random choice. The mixed quantum state is described by the
density operator ϖ = ∑α pα|Ξα⟩⟨Ξα|. There is no assumed correlation
between two different quantum states |Ξα⟩ and |Ξβ⟩.

The specialty of the description is that it entails both classical and quantum
uncertainties. Such physical situations are common in practice and
experiments. This is the reason why density operators are important in quantum
mechanics.

It is important to note that a density matrix may correspond to and describe
more than one physical situation.

As an illustration, considering the 2-dimensional Hilbert space describing a
qubit, a 50-50 mixture of |0⟩ and |1⟩ and a 50-50 mix up of the states 
|Ξ1⟩ = 1

√2
(|0⟩ + |1⟩) and |Ξ2⟩ = 1

√2
(|0⟩ − |1⟩) are both described by the

same density matrix. This can be verified as follows. In the former case the
describing density matrix is

1

2
|0⟩⟨0| +

1

2
|1⟩⟨1|,

while in the latter case the density matrix is

1 1



It is impossible to describe the underlying real situation merely by looking as
the density matrix.

5.3 PROPERTIES OF DENSITY OPERATOR OR MATRIX
In general, an operator ϖ describing a quantum system is a density operator if it
satisfies the conditions:

(i) ϖ† = ϖ (Hermitian),
(ii) ϖ is positive semi-definite,
(iii) tr(ϖ) = 1.

The matrix representation of the density operator is called the density matrix
and is given by the same symbol ϖ.

Being a Hermitian operator, by virtue of the spectral decomposition theorem, it
is possible to find a basis {|τi⟩ : i = 1, . . . , n} (say) of the Hilbert space H in
which the density matrix is diagonal. In that case we can write

ϖ =
n

∑
j=1

λj|τj⟩⟨τj|

(5.2)

Here, λj ≥ 0 by the positive semi-definiteness of ϖ.

Then tr(ϖ) = ∑j λj and tr(ϖ2) = ∑j λ2
j .

1

2
|Ξ1⟩⟨Ξ1| +

1

2
|Ξ2⟩⟨Ξ2|

=
1

2
( 1

√2
(|0⟩ + |1⟩) ⋅

1

√2
(⟨0| + ⟨1|) +

1

√2
(|0⟩ − |1⟩) ⋅

1

√2
(⟨0| − ⟨1|))

=
1

2
|0⟩⟨0| +

1

2
|1⟩⟨1|.



It then follows that tr(ϖ2) ≤ tr(ϖ) = 1 and that the equality follows only
when λk = 1 for some k and λj = 0 for all j ≠ k in which case we have

ϖ = |τk⟩⟨τk|,

that is, in this case, ϖ represents a pure state.:: noindent:: Conversely, it is
immediate that for a pure state we have tr(ϖ2) = 1.

From the above, it follows that ϖ describes a pure state if and only if 
tr(ϖ) = tr(ϖ2).

If A is an observable, then its expectation value when the quantum system is in
the pure state |Ξ⟩ is

(5.3)

Now in a situation where there are many quantum states, say, 
|Ξ1⟩, |Ξ2⟩, … , |Ξk⟩ mixed up (classically) in proportions p1, p2, … , pk, that
is, there are totally m states with m1 number of |Ξ1⟩ states, m2 number of |Ξ2⟩

states, …, mk number of |Ξk⟩ states, with mpi = mi, i = 1, 2, … , k, the value
of ⟨A⟩ depends on two factors. One is the drawing of the state |Ξi⟩ from the
above collection (ensemble), while the other is the finding of the value
according to (5.3) with |Ξ⟩ = |Ξi⟩.

In the first place the probability is classical, while in the latter consideration
this is purely quantum. We can combine them into one formula by writing

⟨A⟩|Ξ⟩ = ⟨Ξ|A|Ξ⟩

= ⟨Ξ|Ξ⟩⟨Ξ|A|Ξ⟩

= ⟨Ξ|ϖA|Ξ⟩

= tr(ϖA).



where

ϖ =
k

∑
i=1

pi|Ξi⟩⟨Ξi|

(5.4)

is the density operator describing the above situation.

5.4 DENSITY MATRIX OF COMPOSITE SYSTEMS
Let HA and HB be Hilbert spaces associated with two systems A and B,
respectively, and ϖ is the density matrix describing the state of the composite
system A and B. Occasionally, it is possible to write the density matrix of the
composite system ϖ as ϖ = ϖA ⊗ ϖB for two density matrices ϖA and ϖB

pertaining to the two systems A and B, respectively. If this is not the case, that
is, if ϖ ≠ ϖA ⊗ ϖB for some choices of density matrices ϖA and ϖB, then we
have an entanglement existing between the two systems.

As an illustration, we take the density matrix of the Bell state 
|Υ2⟩ = 1

√2
(|00⟩ − |11⟩)AB.

The density matrix of |Υ2⟩ is ϖ = |Υ2⟩⟨Υ2| which is

⟨A⟩ =
k

∑
i=1

pi⟨A⟩|Ξi⟩

=
k

∑
i=1

pitr(A|Ξi⟩⟨Ξi|)

= tr(A(
k

∑
i=1

pi|Ξi⟩⟨Ξi|))

= tr(Aϖ),



It cannot be written as a tensor product of two density matrices ϖA and ϖB,
which confirms the entangled character of |Υ2⟩.

5.5 REDUCED DENSITY MATRIX
Let ϖ be the density matrix describing the composite quantum system as in
Section 5.2. Then the reduced density matrices ϖA and ϖB, for the respective
systems A and B, are given by ϖA = trBϖ and ϖB = trAϖ where trA and 
trB are the partial trace operations on the state ϖ of the composite system as
described in Section 1.5.

If HA admits of a basis {|μi⟩, i = 1, 2, . . . , m} and HB admits of a basis, 
{|νi⟩, i = 1, 2, . . . , n} then the composite system of A and B corresponds to the
Hilbert space HA ⊗ HB having dimension mn with a basis consisting of the
element |μiνj⟩(= |μi⟩ ⊗ |νj⟩) i = 1, 2, . . . , m; j = 1, 2, . . . , n. The density
matrix ϖ is described by its element ϖik,lj where 1 ≤ i, l ≤ m and 
1 ≤ k, j ≤ n.

Then ϖA and ϖB are given by

(ϖA)il =
n

∑
p=1

ϖip,lp i, l = 1, 2, . . . , m

and

(ϖB)il =
m

∑
q=1

ϖqk,qj k, j = 1, 2, . . . , n.

.

⎛⎜⎝ 1
2

0 0 − 1
2

0 0 0 0

0 0 0 0

− 1
2

0 0 1
2

⎞⎟⎠



The reduced density matrix describes a subsystem by eliminating the rest part
from the total subsystem.

5.6 QUANTUM ENTROPY
The von Neuman entropy of a mixed state ϖ is given by the expression

E(ϖ) = −Tr(ϖ logϖ).

If ϖ is a pure states, then E(ϖ) = 0.

If A is the subsystem of the system described by ϖ and ϖA is the reduced
density matrix of the system A, the quantity −Tr(ϖA logϖA) is independent
of the choice of the subsystem A.

We call the quantity −Tr(ϖA logϖA) is the entropy entanglement measure of
ϖ. A state given by ϖ is a maximally entangled state if the above entropy
entanglement measure is maximum. It may be observed that from the above
viewpoint, the Bell-states are maximally entangled.

It should be mentioned that there are other entanglement measures like the
widely used ‘negativity’, etc., which are different from the above one. The
concept of the ‘amount of entanglement’ may be different for different choices
of these measures.



6 Quantum Noise
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6.1 INTRODUCTION
This chapter is on quantum noise. The origin of noise as a part of
interaction with the environment is discussed. The Kraus operator
formulation of noise along with various special types of noises are
presented. References [14, 32, 44, 77, 109, 113, 115, 131] are helpful to
understand different aspects of quantum noise.

6.2 ORIGIN OF QUANTUM NOISE
Noise is an unavoidable phenomena in any communication system
regardless of whether it is classical or quantum in nature. The effect of
noise we consider originates through the interaction of the quantum
resource with the environment. It is a quantum decoherence phenomena
[143, 144] by which the quantum resource shared by the different parties
becomes less entangled and thereby the quality of output decreases at the
receiver's end. The output becomes different from the input which is the
desired output. The noise affects the resource when after its generation the
qubits constituting the entangled resource are distributed to different parties.
In the process of distribution, the qubits have to pass through the noisy
environment and thereby become affected with noise.
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6.3 KRAUS OPERATORS
Quantum noise we consider here is described by Kraus operators. Their
origin lies in the quantum decoherence phenomena. An elaborate
description of this origin is beyond the scope of the book. In the following
we give a short deduction of this description of quantum noise under
restricted assumptions.

Let the Hamiltonian function associated with the system and environment
be HS and HE, respectively. Then the Hamiltonian for the system-
Environment combination is given by HT = HS ⊗ HE. Let the space HE

have a basis {|e1⟩, . . . , |en⟩} and the initial states of the system and the
environment be given by ϖ(0) and |e⟩⟨e|, respectively, where we have
assumed that the system is in a mixed state and the environment is in a pure
state. We write

ϖT (0) = ϖ(0) ⊗ |e⟩⟨e|.

The System-Environment composition is assumed to form a closed system
due to which it evolves unitarily. Thus 
ϖT (t) = U †ϖT (0)U = U †ϖ(0) ⊗ |e⟩⟨e|U  where U is the unitary operator
on HT. For finding the evolution of the system we take a partial trace over
E. Then the evolution of the system is given by

ϖ(t) = trE(ϖT (t))

=
m

∑
μ=1

⟨eμ|U †ϖ(0) ⊗ |e⟩⟨e|U |eμ⟩

=
m

∑
μ=1

⟨eμ|U †|e⟩ ϖ(0)⟨e|U |eμ⟩

=
m

∑
μ=1

M †
μϖ(0)Mμ



where Mμ = ⟨e|U |en⟩ operates on the Hilbert space HS and are referred to
as Kraus operators. An important property of the Kraus operators is that
they satisfy the condition ∑m

μ=1 M
†
μMμ = I.

It is important to note that the above derivation is obtained under certain
restrictions. Also, it is noteworthy that the number of Kraus operators
depends on the dimension of the Hilbert space describing the environment.

6.4 DIFFERENT TYPES OF NOISES
There are several types of noises that have different effects on the quantum
system under consideration. They require different choices of Kraus
operators. We note in the following some of these noises.

1. Amplitude-damping Noise: The Kraus operators of amplitude
damping noise are expressed as:

where p is the noise intensity parameter of amplitude damping noise.

2. Bit-flip Noise: The Kraus operators of bit-flip noise are expressed as:

where q is the noise intensity parameter of bit-flip noise.

3. Phase-flip Noise: The Kraus operators of phase-flip noise are
expressed as:

K0 = [ ], K1 = [ ]
1 0

0 √1 − p

0 √p

0 0

K0 = [ ], K1 = [ ]
√1 − q 0

0 √1 − q

0 √q

√q 0



where r is the noise intensity parameter of phase-flip noise.

4. Phase-damping Noise: The Kraus operators of phase-damping noise
are expressed as:

where s is the noise intensity of phase-damping noise.

5. Depolarizing noise: Depolarizing noise is described by the following
Kraus operators:

where l is the depolarizing probability.

In all the above cases the number of Kraus operators is determined by the
dimension of the Hilbert space which describes the environment. They have
different physical effects on the qubit. We do not enter into the details of
these physical effects.

K0 = [ ], K1 = [ ]
√1 − r 0

0 √1 − r

√r 0

0 −√r

K0 = [ ], K1 = [ ], K2 = [ ]
√1 − s 0

0 √1 − s

√s 0

0 0

0 0

0 √s

K0 = √1 − l [ ], K1 = √ l

3
[ ],

1 0

0 1

0 1

1 0

K2 = √ l

3
[ ], K3 = √ l

3
[ ]0 −i

i 0

1 0

0 −1



7 The Quantum
Communication System
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7.1 INTRODUCTION
In this chapter, the quantum communication system is described. The
concept of fidelity quantifying the faithfulness of quantum state transfer is
discussed. For detailed exposure on this topic, [71, 86, 113] is helpful
references.

7.2 GENERAL DESCRIPTION
A general communication system can be described by the following
diagram
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The system can be either classical or quantum or a combination of both.
Quantum information is encoded in qubit systems which is the counterpart
of classical information being encoded in bits. Teleportation is a process by
which qubit systems are transmitted using quantum resources which are
entangled states shared between the different parties participating in the
process. In every teleportation protocol, the assistance of a classical
information channel is unavoidable. Further, at the receiver's end decoding
takes place which, in the case of quantum communications, is the decoding
of information from qubit systems obtained after transmission. In this book
we will be concerned with only the ‘Transmission’ part of the
communication system.

7.3 QUANTUM CHANNEL
A quantum channel is an arrangement, mathematically some operations,
that produces a density matrix ϖ′ corresponding to an input density matrix 
ϖ.

ϖ ⟶ ⟶ ϖ′.

In the teleportation protocols, entangled states act as resources in these
quantum channels.

A formal mathematical description of a quantum channel is done by a
superoperator which is trace-preserving and completely positive. We do not
enter into such mathematical aspects of the theory.

7.4 FIDELITY
The degree of similarity between two quantum systems is mathematically
quantified through the concept of fidelity. It is useful as well as necessary in

Quantum Channel



many practical situations. For instance, the preparation of a quantum state is
generally limited by imperfections. It might be necessary to know in
quantitative terms the amount of imperfection, that is, how much the
prepared state has deviated from the state intended for preparation. As
another example, it is known that exact cloning of a quantum state is
impossible, but it is possible to create approximately cloned copies of a
quantum state. In that situation, it may be necessary to determine the
similarity of the cloned copy with the original one for the purpose of
determining the quality of cloning and for possible measures toward
optimizing the quality of the cloning. Formally, the fidelity between two
mixed states ϖ1 and ϖ2 is given by

F(ϖ1, ϖ2) = (tr√√ϖ1ϖ2√ϖ1)2.

(7.1)

In particular, if one of the states is a pure state, we have the following
expression:

F(ϖ, |Ξ⟩⟨Ξ|) = tr⟨Ξ|ϖ|Ξ⟩.

(7.2)

As an illustration, if both the states are pure states, that is, ϖ1 = |Ω⟩⟨Ω| and
ϖ2 = |Ξ⟩⟨Ξ|, then we have

F(|Ω⟩⟨Ω|, |Ξ⟩⟨Ξ|) = |⟨Ω|Ξ⟩|2.

(7.3)

When a quantum communication process is perfect, that is, the input is
equal to the output, the fidelity takes unit value which can be seen from the



above expressions of fidelity.

Our use of the expression of Fidelity will be mainly based on Eq. (7.2). For
our purpose, we will require the determination of fidelity when teleportation
is imperfect which is when the process is executed in a noisy environment.
The input state then differs from the output state due to the effect of noise
which perturbs the otherwise perfect teleportation process. It is interesting
to note the effects of variation of the noise parameter as well as other
parameters in the protocol. If ϖ1 is the density operator of the input state,
the density matrix of the output state is ϖ2, μ1, . . . , μn are parameters in the
protocol including noise parameters, then the fidelity F(ϖ1, ϖ2, μ1, . . . , μn)

varies with the parameters μ1, . . . , μn. If the noise parameters in the set 
{μ1, . . . , μn} are made vanishingly small, then physical considerations
show that the fidelity F  will tend to the unit value. The above is a universal
feature of fidelity analysis.





Part II

Teleportation Protocols in Ideal
Environment



8 Teleportation of Single-
qubit Quantum States
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8.1 INTRODUCTION
In this chapter, the single qubit teleportation process is presented. The
process is described elaborately. It forms the backbone of understanding of
the rest of the protocols presented in the following chapters.

8.2 THE BASIC PROGRAM OF TELEPORTATION
PROTOCOL

In this chapter, an overview of the basic proposal of teleportation process is
provided. It was originally designed by C. H. Bennett and his coauthors in
1993 where an unknown one-qubit state is transferred from one party,
namely Alice, to another party, namely Bob, by using Bell state as quantum
resource and performing Bell state measurement (BSM) [7]. Additionally,
description of the same protocol using measurement on computational basis
is also included in this chapter. These names Alice and Bob are customary in
information theory and are adopted from there in quantum communication
research. The achievement of teleportation is through quantum mechanical
operations although supported with a classical communication channel. This
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support of classical communication precludes the possibility of super-
luminal signaling, that is, the possibility of sending signals instantaneously
or at least at a speed exceeding that of light. Also, such a necessary support
of classical communication specifies that classical causality is not violated
by the process of teleportation and, therefore, there is no violation of local
realism. Incidentally, classical communication channels as assisting channels
are indispensable in all types of teleportation which are described in the
subsequent chapters. Therefore the above considerations are also applicable
to all the following chapters. It is important to emphasize that teleportation is
fundamentally a process of quantum state transfer with no physical object
being transported.

The teleportation process has several versions and is applicable to the tasks
of transferring various types of states. The basic methodology of
teleportation is also applicable to other areas of quantum mechanics where
remote action is warranted. They include protocols performing telecloning
[29, 49, 51, 68, 108, 116, 181], remote implementation of operators [5, 66,
67, 70, 95, 122, 123, 164, 190, 201], etc. In the following chapters of part II
several protocols are described whose understanding requires the basic ideas
and methodologies presented in this chapter.

Since teleportation protocols are of various kinds, the types discussed here
are not exhaustive. There are several other protocols which have not been
addressed in this book although they are no less important. They include, for
instance, teleportation by quantum walk [18, 40, 84, 148, 151, 167], mentor
initiated teleportation [27], quantum conference by teleportation [26], multi-
directional teleportation [72, 161, 193], short-distance teleportation [2, 3,
103, 157, 177], etc. Particularly teleportation of continuous variables [11, 13,
42, 47, 111, 127, 188] has been kept out of our discussion. The experimental
verification of teleportation has been reported in several works [64, 100,



132]. We have not discussed the experimental aspects since it is outside the
scope of the book.

8.3 TELEPORTATION OF ARBITRARY SINGLE-QUBIT
STATE

In this section a scheme for teleporting an unknown single-qubit quantum
state from the sender Alice to the receiver Bob is described. Bell state
measurement (BSM) is used in the protocol. The protocol was designed by
Bennett et al. [7] through which the concept of teleportation was introduced.

Alice possesses a qubit without knowing any information about it. Let the
single qubit in Alice's possession be given by

|ℵ⟩a = (g1|0⟩ + g2|1⟩),

(8.1)

with the parameters g1, g2 satisfy the normalization condition, that is,

|g1|2 + |g2|2 = 1.

It should be emphasized that no information on g1 and g2 are available with
either Alice or Bob except the above normalization condition.

For the purpose of teleportation, Alice and Bob share a Bell state that acts as
quantum resource. Here we take the shared quantum state to be one of the
four Bell state given by

|Υ1⟩AB =
1

√2
(|00⟩ + |11⟩),

(8.2)



with Alice and Bob holding the first and second qubit, respectively.

The preparation of the entangled resource is shown in Figure 8.1.

Figure 8.1  Circuit representation for the generation of entangled resource |Υ1⟩AB given in Eq. (8.2).

⏎

A classical channel is assumed to exist between Alice and Bob capable of
transmitting two classical bits from Alice to Bob. With the above setup, the
state |ℵ⟩a given in Eq. (8.1) is transmitted from Alice to Bob in the
following way. The whole scenario is depicted in Figure 8.2.

Figure 8.2  Diagram illustrating the single-qubit state transfer by teleportation. ⏎



First, Alice takes one particle from the pair constituting the Bell state, while
the other is retained by Bob. In the entangled state, the indices A and B refer
to the qubits in possessions of Alice and Bob, respectively. So Alice holds
qubits a (to be teleported, Eq. (8.1)), and A (one from the entangled pair
which is given in Eq. (8.2)), and Bob holds the qubit B. The joint state of the
composite three-qubit system is given by:

(8.3)

Alice carries out a measurement on her qubits (a,A), with respect to the Bell
basis specified by

(8.4)

That is, Alice performs a Bell State Measurement (BSM) using the four basis
vectors {|Υ1⟩, |Υ2⟩, |Υ3⟩, |Υ4⟩} described in Eq. (8.4).

To clearly express the outcome of her measurement, it is helpful to rewrite
the joint state of Alice's qubits as a superposition of the above vectors. This
can be achieved by employing the following general identities:

|Γ⟩ = |ℵ⟩a ⊗ |Υ1⟩AB

= (g1|0⟩ + g2|1⟩)a ⊗
1

√2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)AB.

|Υ1⟩aA =
(|00⟩ + |11⟩)

√2
,

|Υ2⟩aA =
(|00⟩ − |11⟩)

√2
,

|Υ3⟩aA =
(|01⟩ + |10⟩)

√2
,

|Υ4⟩aA =
(|01⟩ − |10⟩)

√2
.



(8.5)

Using Eq. (8.5), the total system, that is, Eq. (8.3) can be rewritten as

(8.6)

So far, we have only performed a basis change on Alice's subsystem. No
actual operations have been conducted and the overall state of the three
qubits remains the same. Alice begins the teleportation procedure by
performing a Bell state measurement (BSM) on her two qubits. This BSM
projects the system onto one of the four possible outcomes, each occurring
with equal likelihood which are

|Υ1⟩aA ⊗ (g1|0⟩ + g2|1⟩)B,

|Υ2⟩aA ⊗ (g1|0⟩ − g2|1⟩)B,

|Υ3⟩aA ⊗ (g1|1⟩ + g2|0⟩)B,

|Υ4⟩aA ⊗ (g1|1⟩ − g2|0⟩)B.

|0⟩ ⊗ |0⟩ = 1
√2

(|Υ1⟩ + |Υ2⟩),

|0⟩ ⊗ |1⟩ = 1
√2

(|Υ3⟩ + |Υ4⟩),

|1⟩ ⊗ |0⟩ = 1
√2

(|Υ3⟩ − |Υ4⟩),

|1⟩ ⊗ |1⟩ = 1
√2

(|Υ1⟩ − |Υ2⟩).

|Γ⟩ =
1

2
[|Υ1⟩aA ⊗ (g1|0⟩ + g2|1⟩)B + |Υ2⟩aA ⊗ (g1|0⟩ − g2|1⟩)B

+ |Υ3⟩aA ⊗ (g1|1⟩ + g2|0⟩)B + |Υ4⟩aA ⊗ (g1|1⟩ − g2|0⟩)B]

=
4

∑
i=1

|Υi⟩aA ⊗ |υi⟩B.



The two qubits held by Alice are now in an entangled state, and the
entanglement that initially existed between her and Bob's qubits is no longer
present. By this breakage the entangled resource originally utilized in the
teleportation process is lost forever. This indicates that the quantum resource
can be used only once. There is no reuse of the resource. At this stage Bob is
left with his qubit which is not entangled with any other qubit of the system.

Following the measurement, Alice informs her measurement result to Bob
through the assisting classical channel. Due to the fact that there are four
possible outcomes of Alice's BSM, two classical bits are necessary to convey
the result. Once Bob receives the classical information, he can obtain the
desired state to be teleported by the following procedure. Using this
knowledge, Bob applies an appropriate unitary transformation, specified in
Table 8.1, on his qubit to obtain the original state intended for teleportation.
In the above Table 8.1 ϑx,ϑy and ϑz refer to the Pauli operators described in
Section 3.2.3. This concludes the protocol.

Table 8.1

Local unitary operations for Bob's qubit are
provided as determined by Alice's measurement ⏎

Alice's outcome State of Bob's site Bob's operation

|Υ1⟩aA |υ1⟩ = (g1|0⟩ + g2|1⟩)B (I)B

|Υ2⟩aA |υ2⟩ = (g1|0⟩ − g2|1⟩)B (ϑz)B

|Υ3⟩aA |υ3⟩ = (g1|1⟩ + g2|0⟩)B (ϑx)B

|Υ4⟩aA |υ4⟩ = (g1|1⟩ − g2|0⟩)B (ϑzϑx)B

To illustrate, let us assume that Alice obtains the measurement result |Υ4⟩aA,
then the state of Bob's qubit becomes (g1|1⟩ − g2|0⟩)B. Now Alice conveys
her measurement result to Bob using a classical channel. After receiving this



information, Bob executes the appropriate unitary operation given in Table
8.1, which is (ϑzϑx)B on his qubit, and thereby creates the desired state at
his site. The teleportation is thereby accomplished. The other three cases
arising out of Alice's measurement are similar.

The following are some special features of the teleportation process
described above.

The state to be transmitted is arbitrary. It is unknown and remains so
during the execution of the protocol.

The state is completely lost to Alice after the protocol is finished.

The assistance of a classical communication channel is
indispensable.

Once used, the quantum resource (which is a Bell pair here) is lost. It
cannot be reused.

The protocol is perfect by which it is meant that there is no case of
failure.

There is no upper bound of the physical distance by which the sender
and the receiver can be separated.

Remark: The Bell-state utilized as a quantum resource may well be any of
the remaining three Bell-states |Υ2⟩AB, |Υ3⟩AB and |Υ4⟩AB. The protocol
will require slight modification with the main features remaining the same.

Alternatively, the same problem of transferring a single-qubit state between
two communicating parties Alice (the sender) and Bob (the receiver) can be
performed using a computational basis as the measurement basis. Alice aims



to transfer an unknown state, as specified in Eq. (8.1) to Bob, where g1 and 
g1 are complex numbers chosen such that

|g1|2 + |g2|2 = 1.

For this, we use the two-qubit Bell state given in Eq. (8.2) as a quantum
resource between Alice and Bob. Thus, Alice possesses two qubits: the
particle a, which is the one to be teleported and is described by Eq. (8.1), and
particle A, that is the first qubit of the quantum resource defined in Eq. (8.2).
Bob holds qubit B, the counterpart in the entangled pair shared with Alice.
The entire three-particle system is expressed in Eq. (8.3).

In order to enable a successful measurement using the computational basis,
Alice applies two quantum operations: a controlled-NOT gate is applied by
Alice with ‘a’ as control qubit and ‘A’ as target qubit after which she applies
a Hadamard gate on her qubit ‘a’. These operations transform the state of the
overall three-qubit system into a superposition of the states belonging to the
computational basis of the qubits a and A. After applying these
transformations, the system evolves into the following state:

|Γ⟩ = |ℵ⟩a ⊗ |Υ1⟩AB

= (g1|0⟩ + g2|1⟩)a ⊗
1

√2
(|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩)AB

CNOT =
1

√2
[g1|000⟩ + g1|011⟩ + g2|110⟩ + g2|101⟩]

aAB

HadamardGate =
1

2
[g1(|0⟩ + |1⟩)a|00⟩AB + g1(|0⟩ + |1⟩)a|11⟩AB

+ g2(|0⟩ − |1⟩)a|10⟩AB + g2(|0⟩ − |1⟩)a|01⟩AB]

=
1

2
[(g1|0⟩ + g2|1⟩)B|00⟩aA + (g1|1⟩ + g2|0⟩)B|01⟩aA

+ (g1|0⟩ − g2|1⟩)B|10⟩aA + (g1|1⟩ − g2|0⟩)B|11⟩aA].

−→

−→



(8.7)

Alice now measures her two qubits (a,A) in the computational basis 
{|00⟩, |01⟩, |10⟩, |11⟩}. After the measurement, Alice sends the result of her
measurement through the 2-bit classical channel to Bob. Depending on the
two-bit outcome communicated by Alice, Bob applies a specific Pauli gate
to recover the initial quantum state |ℵ⟩, as outlined in Table 8.2. In the above
Table 8.2 ϑx,ϑy and ϑz refer to the Pauli operators described in Section
3.2.3. This is the end of the protocol.

Table 8.2

State at Bob's location and corresponding unitary
operations for Bob conditioned on Alice's results ⏎

Alice's outcome State of Bob's site Bob's operation

|00⟩aA (g1|0⟩ + g2|1⟩)B (I)B

|01⟩aA (g1|1⟩ + g2|0⟩)B (ϑx)B

|10⟩aA (g1|0⟩ − g2|1⟩)B (ϑz)B

|11⟩aA (g1|1⟩ − g2|0⟩)B (ϑzϑx)B

Apart from teleportation protocols, there exists a separate class of similar
quantum communication processes, which are designed for creating known
quantum states at a distant place. Just the same as in the teleportation
processes, these protocols use entanglement and classical communication for
their accomplishment. They are called Remote State Preparation (RSP)
protocols. In some cases, the information of the known states can be divided
between two parties, where each party possesses only partial information
about the state. This leads to the use of a specific class of protocols called
Joint Remote State Preparation (JRSP) protocol. We discuss representative
cases of these protocols in the APPENDIX.



9 Teleportation Protocol of Multi-
qubit States

DOI: 10.1201/9781003561439-9

9.1 INTRODUCTION
This chapter explicitly deals with the transfer protocols of arbitrary unknown quantum
states that involve two and three qubits. There is a large literature on the teleportation
of multi-qubit states of various kinds which follow the basic techniques of the
protocols described here [16, 22, 23, 50, 83, 94, 97, 99, 112, 130, 133, 158, 187, 191,
194].

9.2 TELEPORTATION OF ARBITRARY TWO-QUBIT STATES
This section outlines the scheme for teleporting unknown two-qubit general quantum
states between two parties, Alice and Bob. Alice wishes to transmit the following
general two-qubit state to Bob described as

|ℵ⟩a1a2
= (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩),

(9.1)

where the parameters g1, g2, g3, and g4 meet the normalization condition, that is,

4

∑
k=1

|gk|2 = 1.

The state is unknown to both Alice and Bob which is equivalent to the fact that the
coefficients g1, g2, g3, and g4 are unknown except for the normalization relation. The

https://doi.org/10.1201/9781003561439-9


protocol described here is given by G. Rigolin [133].

The following are the sixteen generalized Bell states, also referred to as G states for
simplicity (introduced by Rigolin [133]). These states are classified into four different
groups.

Group 1:

(9.2)

Group 2:

(9.3)

Group 3:

(9.4)

Group 4:

|G1⟩ = 1
2 (|0000⟩ + |0101⟩ + |1010⟩ + |1111⟩),

|G2⟩ = 1
2 (|0000⟩ + |0101⟩ − |1010⟩ − |1111⟩),

|G3⟩ = 1
2 (|0000⟩ − |0101⟩ + |1010⟩ − |1111⟩),

|G4⟩ = 1
2 (|0000⟩ − |0101⟩ − |1010⟩ + |1111⟩).

|G5⟩ = 1
2

(|0001⟩ + |0100⟩ + |1011⟩ + |1110⟩),

|G6⟩ = 1
2

(|0001⟩ + |0100⟩ − |1011⟩ − |1110⟩),

|G7⟩ = 1
2

(|0001⟩ − |0100⟩ + |1011⟩ − |1110⟩),

|G8⟩ = 1
2

(|0001⟩ − |0100⟩ − |1011⟩ + |1110⟩).

|G9⟩ = 1
2 (|0010⟩ + |0111⟩ + |1000⟩ + |1101⟩),

|G10⟩ = 1
2 (|0010⟩ + |0111⟩ − |1000⟩ − |1101⟩),

|G11⟩ = 1
2 (|0010⟩ − |0111⟩ + |1000⟩ − |1101⟩),

|G12⟩ = 1
2 (|0010⟩ − |0111⟩ − |1000⟩ + |1101⟩).



(9.5)

The above G-states satisfy the condition given by

16

∑
k=1

|Gk⟩⟨Gk| = I

and

⟨Gk|Gl⟩ = δkl

and thus form an orthonormal basis, which is generally known as the G-basis.

Now, Alice and Bob share one of the sixteen G states to utilize it as the quantum
resource in the teleportation process with the first two qubits held by Alice and the
remaining two by Bob.

Assume that Alice and Bob share the state

|G1⟩A1A2B1B2
=

1

2
(|0000⟩ + |0101⟩ + |1010⟩ + |1111⟩),

where the pair of qubits (A1, A2) and (B1, B2) belong to Alice and Bob, respectively.
The circuit diagram corresponding to the generation of quantum resource 
|G1⟩A1A2B1B2

 is given in Figure 9.1. Also there is a classical channel between Alice
and Bob.

|G13⟩ = 1
2 (|0011⟩ + |0110⟩ + |1001⟩ + |1100⟩),

|G14⟩ = 1
2 (|0011⟩ + |0110⟩ − |1001⟩ − |1100⟩),

|G15⟩ = 1
2 (|0011⟩ − |0110⟩ + |1001⟩ − |1100⟩),

|G16⟩ = 1
2 (|0011⟩ − |0110⟩ − |1001⟩ + |1100⟩).



Figure 9.1  Circuit diagram for generation of the quantum resource |G1⟩. ⏎

The initial combined state of the system is described as

(9.6)

No measurement has taken place yet, so the state of the qubits remains unchanged.
Applying Eqs. (9.2) – (9.5), the combined state |Γ⟩ given in Eq. (9.6) can be written as

|Γ⟩ =
1

4

16

∑
j=1

|Gj⟩a1a2A1A2 |υj⟩B1B2 ,

(9.7)

|Γ⟩ = |ℵ⟩a1a2 ⊗ |G1⟩A1A2B1B2

= (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩)a1a2

⊗
1

2
(|0000⟩ + |0101⟩ + |1010⟩ + |1111⟩)A1A2B1B2

=
g1

2
(|000000⟩ + |000101⟩ + |001010⟩ + |001111⟩)a1a2A1A2B1B2

+
g2

2
(|010000⟩ + |010101⟩ + |011010⟩ + |011111⟩a1a2A1A2B1B2

+
g3

2
(|100000⟩ + |100101⟩ + |101010⟩ + |101111⟩)a1a2A1A2B1B2

+
g4

2
(|110000⟩ + |110101⟩ + |111010⟩ + |111111⟩)a1a2A1A2B1B2 .



where the states |υj⟩ are given in Table 9.1.

Table 9.1

Reduced state and Bob's unitary operations conditioned on Alice's
outcomes ⏎

Alice's result Reduced state with Bob Bob's perfect operation

|G1⟩ |υ1⟩ = (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩)B1B2 I

|G2⟩ |υ2⟩ = (g1|00⟩ + g2|01⟩ − g3|10⟩ − g4|11⟩)B1B2 (ϑz)B1

|G3⟩ |υ3⟩ = (g1|00⟩ − g2|01⟩ + g3|10⟩ − g4|11⟩)B1B2 (ϑz)B2

|G4⟩ |υ4⟩ = (g1|00⟩ − g2|01⟩ − g3|10⟩ + g4|11⟩)B1B2 (ϑz)B2 ⊗ (ϑz)B1

|G5⟩ |υ5⟩ = (g1|01⟩ + g2|00⟩ + g3|11⟩ + g4|10⟩)B1B2 (ϑx)B2

|G6⟩ |υ6⟩ = (g1|01⟩ + g2|00⟩ − g3|11⟩ − g4|10⟩)B1B2 (ϑz)B1 ⊗ (ϑx)B2

|G7⟩ |υ7⟩ = (g1|01⟩ − g2|00⟩ + g3|11⟩ − g4|10⟩)B1B2 (ϑzϑx)B2

|G8⟩ |υ8⟩ = (g1|01⟩ − g2|00⟩ − g3|11⟩ + g4|10⟩)B1B2 (ϑz)B1 ⊗ (ϑzϑx)B2

|G9⟩ |υ9⟩ = (g1|10⟩ + g2|11⟩ + g3|00⟩ + g4|01⟩)B1B2 (ϑx)B1

|G10⟩ |υ10⟩ = (g1|10⟩ + g2|11⟩ − g3|00⟩ − g4|01⟩)B1B2 (ϑzϑx)B1

|G11⟩ |υ11⟩ = (g1|10⟩ − g2|11⟩ + g3|00⟩ − g4|01⟩)B1B2 (ϑz)B2 ⊗ (ϑx)B1

|G12⟩ |υ12⟩ = (g1|10⟩ − g2|11⟩ − g3|00⟩ + g4|01⟩)B1B2 (ϑz)B2 ⊗ (ϑzϑx)B1

|G13⟩ |υ13⟩ = (g1|11⟩ + g2|10⟩ + g3|01⟩ + g4|00⟩)B1B2 (ϑx)B2 ⊗ (ϑx)B1

|G14⟩ |υ14⟩ = (g1|11⟩ + g2|10⟩ − g3|01⟩ − g4|00⟩)B1B2 (ϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑx)B1

|G15⟩ |υ15⟩ = (g1|11⟩ − g2|10⟩ + g3|01⟩ − g4|00⟩)B1B2 (ϑzϑx)B2 ⊗ (ϑx)B1

|G16⟩ |υ16⟩ = (g1|11⟩ − g2|10⟩ − g3|01⟩ + g4|00⟩)B1B2 (ϑz)B2 ⊗ (ϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑx)B1

Alice then executes a measurement on her four qubits in the G-basis mentioned above.
Following the measurement, she transmits her outcomes classically to Bob, indicating
the specific G state that was observed. With this information, Bob is able to identify
and apply the correct unitary transformation to his two qubits, allowing him to
faithfully reconstruct the general two-qubit quantum state originally in the possession
of Alice. The corresponding Pauli operations against Alice's possible results are



provided in Table 9.1. A visual representation of the entire protocol is presented in
Figure 9.2. The following is an illustration of the above.

Figure 9.2  Schematic diagram of transferring a general 2-qubit state through quantum teleportation. ⏎

Suppose, for instance, that Alice obtains the measurement result |G11⟩a1a2A1A2 , then
the reduced state at Bob's site becomes

(g1|10⟩ − g2|11⟩ + g3|00⟩ − g4|01⟩)B1B2
.

Alice now uses the classical communication channel to transfer her results to Bob.
Upon receiving this information, Bob performs the corresponding unitary operation 
(ϑz)B2 ⊗ (ϑx)B1  on his qubits as shown in Table 9.1. This completes the teleportation
of the general two-qubit state.

9.3 TELEPORTATION OF ARBITRARY THREE-QUBIT STATES
We now describe a teleportation protocol that enables the transfer of a general three-
qubit state from Alice to Bob. There is no limit to the physical distance by which they
can be separated. The protocol described here is designed by Yi-you et al. [112]. The
unknown quantum state to be teleported is represented as follows:



(9.8)

where Alice possesses the qubits a1, a2, a3 and the parameters obey the criteria for the
normalization condition, that is,

8

∑
k=1

|gk|2 = 1.

At the outset Alice and Bob share three W-class states which are given by

(9.9)

Alice holds the qubits a1, a2, a3, A1, A2, A3, A4, A5, A6, whereas qubits B1, B2, B3

belong to Bob.

Also there is a classical communication channel between Alice and Bob.

The total quantum system, composed of the twelve qubits, can be written as

|Γ⟩ = |ℵ⟩a1a2a3 ⊗ |E1⟩A1A2B1 ⊗ |E2⟩A3A4B2 ⊗ |E3⟩A5A6B3 .

(9.10)

In order to transfer the original state given in Eq. (9.8) at the site of Bob, first Alice
executes three 3-qubit measurements on the basis containing a set of linearly
independent vectors {|ε±⟩, |ω±⟩}, respectively. These are given by

(9.11)

|ℵ⟩a1a2a3 = (g1|000⟩ + g2|001⟩ + g3|010⟩ + g4|011⟩ + g5|100⟩

+ g6|101⟩ + g7|110⟩ + g8|111⟩),

|E1⟩A1A2B1
= 1

2 (|100⟩ + |010⟩ + √2|001⟩)A1A2B1
,

|E2⟩A3A4B2
= 1

2 (|100⟩ + |010⟩ + √2|001⟩)A3A4B2
,

|E3⟩A5A6B3
= 1

2 (|100⟩ + |010⟩ + √2|001⟩)A5A6B3
.

|ε±⟩(a1A1A2)/(a2A3A4)/(a3A5A6) = 1
2 (|010⟩ + |001⟩ ± √2|100⟩),

|ω±⟩(a1A1A2)/(a2A3A4)/(a3A5A6) = 1
2 (|110⟩ + |101⟩ ± √2|000⟩).



By a result of linear algebra, it is always possible for Alice to augment this set into a
basis, that is, to find a basis containing the above set of four ket vectors and then
perform the measurement.

After completing the measurement, Alice gets one of the 64 possible outcomes with
equal probability described in the following cases. The state of the remaining qubits
are detailed in Eqs. (9.12) - (9.19).

Case I: Measurement result of Alice: |ε±⟩a1A1A2 |ε
±⟩a2A3A4 |ε

±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.12)

Case-II: Measurement result of Alice: |ε±⟩a1A1A2
|ε±⟩a2A3A4

|ω±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.13)

Case-III: Measurement result of Alice: |ε±⟩a1A1A2 |ω
±⟩a2A3A4 |ε

±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.14)

a3A5A6⟨ε
±|a2A3A4⟨ε

±|a1A1A2⟨ε
±||Γ⟩ =

1

8
(g1|000⟩ ± + + g2|001⟩ + ± + g3|010⟩

± ± + g4|011⟩ + + ± g5|100⟩ ± + ± g6|101⟩

+ ± ± g7|110⟩ ± ± ± g8|111⟩)B1B2B3
.

a3A5A6⟨ω
±|a2A3A4⟨ε

±|a1A1A2⟨ε
±||Γ⟩ =

1

8
(± + +g1|001⟩ + g2|000⟩ ± ± + g3|011⟩

+ ± + g4|010⟩ ± + ± g5|101⟩ + + ± g6|100⟩

± ± ± g7|111⟩ + ± ± g8|110⟩)B1B2B3 .

a3A5A6⟨ε
±|a2A3A4⟨ω

±|a1A1A2⟨ε
±||Γ⟩ =

1

8
(+ ± +g1|010⟩ ± ± + g2|011⟩ + g3|000⟩

± + + g4|001⟩ + ± ± g5|110⟩ ± ± ± g6|111⟩

+ + ± g7|100⟩ ± + ± g8|101⟩)B1B2B3
.



Case-IV: Measurement result of Alice: |ε±⟩a1A1A2 |ω
±⟩a2A3A4 |ω

±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.15)

Case-V: Measurement result of Alice: |ω±⟩a1A1A2
|ε±⟩a2A3A4

|ε±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.16)

Case-VI: Measurement result of Alice: |ω±⟩a1A1A2 |ε
±⟩a2A3A4 |ω

±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.17)

Case-VII: Measurement result of Alice: |ω±⟩a1A1A2
|ω±⟩a2A3A4

|ε±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

a3A5A6⟨ω
±|a2A3A4⟨ω

±|a1A1A2⟨ε
±||Γ⟩ =

1

8
(±±+g1|011⟩+±+ g2|010⟩ ±++ g3|001⟩

+ g4|000⟩ ± ± ± g5|111⟩ + ± ± g6|110⟩

± + ± g7|101⟩ + + ± g8|100⟩)B1B2B3
.

a3A5A6⟨ε
±|a2A3A4⟨ε

±|a1A1A2⟨ω
±||Γ⟩ =

1

8
(++±g1|100⟩±+±g2|101⟩+±±g3|110⟩

± ± ± g4|111⟩ + g5|000⟩ ± + + g6|001⟩

+ ± + g7|010⟩ ± ± + g8|011⟩)B1B2B3 .

a3A5A6⟨ω
±|a2A3A4⟨ε

±|a1A1A2⟨ω
±||Γ⟩ =

1

8
(±+±g1|101⟩++±g2|100⟩±±±g3|111⟩

+ ± ± g4|110⟩ ± + + g5|001⟩ + g6|000⟩

± ± + g7|011⟩ + ± + g8|010⟩)B1B2B3
.

a3A5A6⟨ε
±|a2A3A4⟨ω

±|a1A1A2⟨ω
±||Γ⟩ =

1

8
(+±±g1|110⟩±±±g2|111⟩ ++±g3|100⟩

± + ± g4|101⟩ + ± + g5|010⟩ ± ± + g6|011⟩

+ g7|000⟩ ± + + g8|001⟩)B1B2B3 .



(9.18)

Case-VIII: Measurement result of Alice: |ω±⟩a1A1A2 |ω
±⟩a2A3A4 |ω

±⟩a3A5A6

Then the state of the qubits remaining with Bob becomes

(9.19)

The notation above is explained as follows. The signs ‵+’ or ‵±’ from right to left in
the right hand side of Eqs. (9.12) - (9.19) reflect to Alice's measurements of qubits 
(a1A1A2), (a2A3A4), (a3A5A6), respectively. Although the notations ‵±’ of the
qubits B1, B2 and B3 in the second column of Table 9.2, Table 9.3, Table 9.4, Table
9.5, Table 9.6, Table 9.7, Table 9.8, Table 9.9 correspond to the measurement of qubits
(a1A1A2), (a2A3A4), (a3A5A6), respectively. If the three-qubit measurement is ‵+’,
the notation ‵±’ will be ‵+’ and while in the other case it will be ‵−’.

Table 9.2

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-I ⏎

Alice's results Bob's operations

|ε+⟩a1A1A2 |ε+⟩a2A3A4 |ε+⟩a3A5A6 (I)B1 ⊗ (I)B2 ⊗ (I)B3

|ε+⟩a1A1A2 |ε+⟩a2A3A4 |ε−⟩a3A5A6 (I)B1 ⊗ (I)B2 ⊗ (ϑz)B3

|ε+⟩a1A1A2 |ε−⟩a2A3A4 |ε+⟩a3A5A6 (I)B1 ⊗ (ϑz)B2 ⊗ (I)B3

|ε+⟩a1A1A2 |ε−⟩a2A3A4 |ε−⟩a3A5A6 (I)B1 ⊗ (ϑz)B2 ⊗ (ϑz)B3

|ε−⟩a1A1A2 |ε+⟩a2A3A4 |ε+⟩a3A5A6 (ϑz)B1 ⊗ (I)B2 ⊗ (I)B3

|ε−⟩a1A1A2 |ε+⟩a2A3A4 |ε−⟩a3A5A6 (ϑz)B1 ⊗ (I)B2 ⊗ (ϑz)B3

|ε−⟩a1A1A2 |ε−⟩a2A3A4 |ε+⟩a3A5A6 (ϑz)B1 ⊗ (ϑz)B2 ⊗ (I)B3

|ε−⟩a1A1A2 |ε−⟩a2A3A4 |ε−⟩a3A5A6 (ϑz)B1 ⊗ (ϑz)B2 ⊗ (ϑz)B3

a3A5A6⟨ω
±|a2A3A4⟨ω

±|a1A1A2⟨ω
±||Γ⟩ =

1

8
(±±±g1|111⟩ +±± g2|110⟩ ±+± g3|101⟩

+ + ± g4|100⟩ ±± + g5|011⟩ + ± + g6|010⟩

± + + g7|001⟩ + g8|000⟩)B1B2B3
.



Table 9.3

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-II ⏎

Alice's results Bob's operations

|ε+⟩a1A1A2 |ε+⟩a2A3A4 |ω+⟩a3A5A6 (I)B1 ⊗ (I)B2 ⊗ (ϑx)B3

|ε+⟩a1A1A2 |ε+⟩a2A3A4 |ω−⟩a3A5A6 (I)B1 ⊗ (I)B2 ⊗ (ϑxϑz)B3

|ε+⟩a1A1A2 |ε−⟩a2A3A4 |ω+⟩a3A5A6 (I)B1 ⊗ (ϑz)B2 ⊗ (ϑx)B3

|ε+⟩a1A1A2 |ε−⟩a2A3A4 |ω−⟩a3A5A6 (I)B1 ⊗ (ϑz)B2 ⊗ (ϑxϑz)B3

|ε−⟩a1A1A2 |ε+⟩a2A3A4 |ω+⟩a3A5A6 (ϑz)B1 ⊗ (I)B2 ⊗ (ϑx)B3

|ε−⟩a1A1A2 |ε+⟩a2A3A4 |ω−⟩a3A5A6 (ϑz)B1 ⊗ (I)B2 ⊗ (ϑxϑz)B3

|ε−⟩a1A1A2 |ε−⟩a2A3A4 |ω+⟩a3A5A6 (ϑz)B1 ⊗ (ϑz)B2 ⊗ (ϑx)B3

|ε−⟩a1A1A2 |ε−⟩a2A3A4 |ω−⟩a3A5A6 (ϑz)B1 ⊗ (ϑz)B2 ⊗ (ϑxϑz)B3

Table 9.4

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-III ⏎

Alice's results Bob's operations

|ε+⟩a1A1A2 |ω+⟩a2A3A4 |ε+⟩a3A5A6 (I)B1 ⊗ (ϑx)B2 ⊗ (I)B3

|ε+⟩a1A1A2 |ω+⟩a2A3A4 |ε−⟩a3A5A6 (I)B1 ⊗ (ϑx)B2 ⊗ (ϑz)B3

|ε+⟩a1A1A2 |ω−⟩a2A3A4 |ε+⟩a3A5A6 (I)B1 ⊗ (ϑxϑz)B2 ⊗ (I)B3

|ε+⟩a1A1A2 |ω−⟩a2A3A4 |ε−⟩a3A5A6 (I)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑz)B3

|ε−⟩a1A1A2 |ω+⟩a2A3A4 |ε+⟩a3A5A6 (ϑz)B1 ⊗ (ϑx)B2 ⊗ (I)B3

|ε−⟩a1A1A2 |ω+⟩a2A3A4 |ε−⟩a3A5A6 (ϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑz)B3

|ε−⟩a1A1A2 |ω−⟩a2A3A4 |ε+⟩a3A5A6 (ϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (I)B3

|ε−⟩a1A1A2 |ω−⟩a2A3A4 |ε−⟩a3A5A6 (ϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑz)B3

Table 9.5



Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-IV ⏎

Alice's results Bob's operations

|ε+⟩a1A1A2 |ω+⟩a2A3A4 |ω+⟩a3A5A6 (I)B1 ⊗ (ϑx)B2 ⊗ (ϑx)B3

|ε+⟩a1A1A2 |ω+⟩a2A3A4 |ω−⟩a3A5A6 (I)B1 ⊗ (ϑx)B2 ⊗ (ϑxϑz)B3

|ε+⟩a1A1A2 |ω−⟩a2A3A4 |ω+⟩a3A5A6 (I)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑx)B3

|ε+⟩a1A1A2 |ω−⟩a2A3A4 |ω−⟩a3A5A6 (I)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑxϑz)B3

|ε−⟩a1A1A2 |ω+⟩a2A3A4 |ω+⟩a3A5A6 (ϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑx)B3

|ε−⟩a1A1A2 |ω+⟩a2A3A4 |ω−⟩a3A5A6 (ϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑxϑz)B3

|ε−⟩a1A1A2 |ω−⟩a2A3A4 |ω+⟩a3A5A6 (ϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑx)B3

|ε−⟩a1A1A2 |ω−⟩a2A3A4 |ω−⟩a3A5A6 (ϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑxϑz)B3

Table 9.6

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-V ⏎

Alice's results Bob's operations

|ω+⟩a1A1A2 |ε+⟩a2A3A4 |ε+⟩a3A5A6 (ϑx)B1 ⊗ (I)B2 ⊗ (I)B3

|ω+⟩a1A1A2 |ε+⟩a2A3A4 |ε−⟩a3A5A6 (ϑx)B1 ⊗ (I)B2 ⊗ (ϑz)B3

|ω+⟩a1A1A2 |ε−⟩a2A3A4 |ε+⟩a3A5A6 (ϑx)B1 ⊗ (ϑz)B2 ⊗ (I)B3

|ω+⟩a1A1A2 |ε−⟩a2A3A4 |ε−⟩a3A5A6 (ϑx)B1 ⊗ (ϑz)B2 ⊗ (ϑz)B3

|ω−⟩a1A1A2 |ε+⟩a2A3A4 |ε+⟩a3A5A6 (ϑxϑz)B1 ⊗ (I)B2 ⊗ (I)B3

|ω−⟩a1A1A2 |ε+⟩a2A3A4 |ε−⟩a3A5A6 (ϑxϑz)B1 ⊗ (I)B2 ⊗ (ϑz)B3

|ω−⟩a1A1A2 |ε−⟩a2A3A4 |ε+⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑz)B2 ⊗ (I)B3

|ω−⟩a1A1A2 |ε−⟩a2A3A4 |ε−⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑz)B2 ⊗ (ϑz)B3

Table 9.7

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second



column for Case-VI ⏎

Alice's results Bob's operations

|ω+⟩a1A1A2 |ε+⟩a2A3A4 |ω+⟩a3A5A6 (ϑx)B1 ⊗ (I)B2 ⊗ (ϑx)B3

|ω+⟩a1A1A2 |ε+⟩a2A3A4 |ω−⟩a3A5A6 (ϑx)B1 ⊗ (I)B2 ⊗ (ϑxϑz)B3

|ω+⟩a1A1A2 |ε−⟩a2A3A4 |ω+⟩a3A5A6 (ϑx)B1 ⊗ (ϑz)B2 ⊗ (ϑx)B3

|ω+⟩a1A1A2 |ε−⟩a2A3A4 |ω−⟩a3A5A6 (ϑx)B1 ⊗ (ϑz)B2 ⊗ (ϑxϑz)B3

|ω−⟩a1A1A2 |ε+⟩a2A3A4 |ω+⟩a3A5A6 (ϑxϑz)B1 ⊗ (I)B2 ⊗ (ϑx)B3

|ω−⟩a1A1A2 |ε+⟩a2A3A4 |ω−⟩a3A5A6 (ϑxϑz)B1 ⊗ (I)B2 ⊗ (ϑxϑz)B3

|ω−⟩a1A1A2 |ε−⟩a2A3A4 |ω+⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑz)B2 ⊗ (ϑx)B3

|ω−⟩a1A1A2 |ε−⟩a2A3A4 |ω−⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑz)B2 ⊗ (ϑxϑz)B3

Table 9.8

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-VII ⏎

Alice's results Bob's operations

|ω+⟩a1A1A2 |ω+⟩a2A3A4 |ε+⟩a3A5A6 (ϑx)B1 ⊗ (ϑx)B2 ⊗ (I)B3

|ω+⟩a1A1A2 |ω+⟩a2A3A4 |ε−⟩a3A5A6 (ϑx)B1 ⊗ (ϑx)B2 ⊗ (ϑz)B3

|ω+⟩a1A1A2 |ω−⟩a2A3A4 |ε+⟩a3A5A6 (ϑx)B1 ⊗ (ϑxϑz)B2 ⊗ (I)B3

|ω+⟩a1A1A2 |ω−⟩a2A3A4 |ε−⟩a3A5A6 (ϑx)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑz)B3

|ω−⟩a1A1A2 |ω+⟩a2A3A4 |ε+⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑx)B2 ⊗ (I)B3

|ω−⟩a1A1A2 |ω+⟩a2A3A4 |ε−⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑz)B3

|ω−⟩a1A1A2 |ω−⟩a2A3A4 |ε+⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (I)B3

|ω−⟩a1A1A2 |ω−⟩a2A3A4 |ε−⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑz)B3

Table 9.9

Bob's required unitary operations determined by Alice's
outcomes (first column), are presented in the second
column for Case-VIII ⏎

Alice's results Bob's operations



Alice's results Bob's operations

|ω+⟩a1A1A2 |ω+⟩a2A3A4 |ω+⟩a3A5A6 (ϑx)B1 ⊗ (ϑx)B2 ⊗ (ϑx)B3

|ω+⟩a1A1A2 |ω+⟩a2A3A4 |ω−⟩a3A5A6 (ϑx)B1 ⊗ (ϑx)B2 ⊗ (ϑxϑz)B3

|ω+⟩a1A1A2 |ω−⟩a2A3A4 |ω+⟩a3A5A6 (ϑx)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑx)B3

|ω+⟩a1A1A2 |ω−⟩a2A3A4 |ω−⟩a3A5A6 (ϑx)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑxϑz)B3

|ω−⟩a1A1A2 |ω+⟩a2A3A4 |ω+⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑx)B3

|ω−⟩a1A1A2 |ω+⟩a2A3A4 |ω−⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑx)B2 ⊗ (ϑxϑz)B3

|ω−⟩a1A1A2 |ω−⟩a2A3A4 |ω+⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑx)B3

|ω−⟩a1A1A2 |ω−⟩a2A3A4 |ω−⟩a3A5A6 (ϑxϑz)B1 ⊗ (ϑxϑz)B2 ⊗ (ϑxϑz)B3

Now Alice notifies her outcomes to Bob over 6-bit classical channel. With the
classical information from Alice in hand, Bob finally executes appropriate Pauli
operations on his qubits to reconstruct the original state which Alice desires to
teleport. The following Table 9.2, Table 9.3, Table 9.4, Table 9.5, Table 9.6, Table 9.7,
Table 9.8, Table 9.9 include all 64 measurement outcomes of Alice and associated
Bob's operations. The protocol terminates at this point. The whole scenario is depicted
in Figure 9.3.



Figure 9.3  Schematic diagram for transfer of a general 3-qubit state using quantum teleportation. ⏎

As an instance, consider the case where Alice's measurement yields

|ω−⟩a1A1A2 |ε
−⟩a2A3A4 |ε

+⟩a3A5A6 .

Then the state of the remaining qubits becomes

Alice uses a classical channel to transmit her measurement result to Bob who then
applies the relevant unitary operation from Table 9.6, which is

(ϑxϑz)B1 ⊗ (ϑz)B2 ⊗ (I)B3 ,

by which the state transfer is achieved. That is the end of the protocol.

( + + − g1|100⟩ + + − g2|101⟩ + − − g3|110⟩ + − − g4|111⟩

+ g5|000⟩ + + + g6|001⟩ + − + g7|010⟩ + − + g8|011⟩)B1B2B3

= (−g1|100⟩ − g2|101⟩ + g3|110⟩ + g4|111⟩ + g5|000⟩

+ g6|001⟩ − g7|010⟩ − g8|011⟩)B1B2B3 .



A special feature about the above protocol is that it uses three separate entangled
resources. When more involved communication tasks are attempted, the use of multi-
partite entanglement resources with large number of qubits become inevitable. In view
of the fragile nature of the entangled states, and also due to the difficulties in the
generation of such entangled states, it is sometimes recommended, if possible to use
multiple quantum resources with relatively less number of involved qubits. The
present teleportation scheme is an instance of that kind of protocol.



10 Bidirectional Teleportation
Protocols

DOI: 10.1201/9781003561439-10

10.1 INTRODUCTION
In this chapter, the bidirectional teleportation process is described which is
mutual exchange of quantum states between two distant parties connected
through entanglement. Here, both parties act as sender and receiver.
Bidirectional teleportation schemes of various kinds have been discussed in
works like [19, 46, 59, 137, 159, 160, 162, 166, 203].

10.2 MUTUAL EXCHANGE OF SINGLE-QUBIT STATES
In this scenario, two individuals, Alice and Bob, each possesses a general
unknown one-qubit state denoted |ℵ1⟩ and |ℵ2⟩, respectively, and given by

(10.1)

where coefficients g1, g2, h1, h2 meet the normalization conditions, that is,

2

∑
k=1

|gk|2 = 1 and
2

∑
l=1

|hl|
2 = 1.

|ℵ1⟩a = (g1|0⟩ + g2|1⟩),

|ℵ2⟩b = (h1|0⟩ + h2|1⟩),

https://doi.org/10.1201/9781003561439-10


There is a classical communication channel connecting the two parties.

The objective is to exchange the two states between Alice and Bob which is
performed by a bidirectional teleportation protocol given by Verma et al. [163].

Assume that Alice intends to communicate her single-qubit quantum state |ℵ1⟩

to Bob, whereas Bob intends to transfer his state |ℵ2⟩ to Alice simultaneously.
To achieve this goal, a 4-qubit cluster state is used as a quantum resource,
which is

|E⟩A1B1A2B2
=

1

2
(|0000⟩ + |0011⟩ + |1100⟩ − |1111⟩)A1B1A2B2

,

(10.2)

where the qubits (A1, A2) and (B1, B2) are held by Alice and Bob,
respectively. Figure 10.1 shows the representation of the corresponding
quantum circuit for generating the above quantum resource.

Figure 10.1  Circuit representation for generation of the entangled resource given in Eq. (10.2). ⏎

The system as a whole may be expressed as



(10.3)

Alice possessed the qubits (a, A1, A2) and the qubits (b, B1, B2) are held by
Bob, respectively. The teleportation process for exchange of qubit states is
completed through the following steps:

Step I Alice measures her qubits (a, A1) on the basis given by

(10.4)

Following the measurement, she uses a 2-bit classical channel to transmit her
result to Bob.

Step II Bob performs a measurement on his qubits (b, B2) on the basis given
by

|Γ⟩ = |ℵ1⟩a ⊗ |ℵ2⟩b ⊗ |E⟩A1B1A2B2

= (g1|0⟩ + g2|1⟩)a ⊗ (h1|0⟩ + h2|1⟩)b

⊗
1

2
(|0000⟩ + |0011⟩ + |1100⟩ − |1111⟩)A1B1A2B2 .

|Υ1⟩aA1 =
1

√2
(|00⟩ + |11⟩),

|Υ2⟩aA1 =
1

√2
(|00⟩ − |11⟩),

|Υ3⟩aA1 =
1

√2
(|01⟩ + |10⟩),

|Υ4⟩aA1 =
1

√2
(|01⟩ − |10⟩).

1



(10.5)

After the measurement, he sends his result to Alice via a 2-bit classical
channel.

Step III A controlled-Z (CZ) gate is applied to qubits (B1, A2), using A2 as
control qubit and B1 as target qubit.

This operation requires that the party performing it will require to have access
to both the qubits A2 and B1. It can be either Alice or Bob or a third party
having access to A2 and B1. The above step is unavoidable in the protocol.

Step IV Finally, upon receiving the classical messages, both parties apply the
appropriate unitary operations corresponding to these messages to recover the
original quantum state. The protocol is thereby accomplished.

Now we discuss the protocol in details:

Using the Bell-basis given in Eq. (10.4), the whole system (10.3) can be
rewritten as

|Υ1⟩bB2 =
1

√2
(|00⟩ + |11⟩),

|Υ2⟩bB2 =
1

√2
(|00⟩ − |11⟩),

|Υ3⟩bB2 =
1

√2
(|01⟩ + |10⟩),

|Υ4⟩bB2 =
1

√2
(|01⟩ − |10⟩).



(10.6)

Now, both parties make Bell-state measurement (BSM) on their respective
pairs of qubits (a, A1) and (b, B2), and transmit the results of their
measurements to each other via 2-bit classical channels. After BSM, the
reduced states of qubits (B1, A2) are as follows:

|Γ⟩ =
1

4
[|Υ1⟩aA1

|Υ1⟩bB2(g1h1|00⟩ + g1h2|01⟩ + g2h1|10⟩ − g2h2|11⟩)B1A2

+ |Υ1⟩aA1 |Υ2⟩bB2(g1h1|00⟩ − g1h2|01⟩ + g2h1|10⟩ + g2h2|11⟩)B1A2

+ |Υ2⟩aA1 |Υ1⟩bB2(g1h1|00⟩ + g1h2|01⟩ − g2h1|10⟩ + g2h2|11⟩)B1A2

+ |Υ2⟩aA1 |Υ2⟩bB2(g1h1|00⟩ − g1h2|01⟩ − g2h1|10⟩ − g2h2|11⟩)B1A2

+ |Υ1⟩aA1 |Υ3⟩bB2(g1h1|01⟩ + g1h2|00⟩ − g2h1|11⟩ + g2h2|10⟩)B1A2

+ |Υ1⟩aA1 |Υ4⟩bB2(g1h1|01⟩ − g1h2|00⟩ − g2h1|11⟩ − g2h2|10⟩)B1A2

+ |Υ2⟩aA1 |Υ3⟩bB2(g1h1|01⟩ + g1h2|00⟩ + g2h1|11⟩ − g2h2|10⟩)B1A2

+ |Υ2⟩aA1 |Υ4⟩bB2(g1h1|01⟩ − g1h2|00⟩ + g2h1|11⟩ + g2h2|10⟩)B1A2

+ |Υ3⟩aA1 |Υ1⟩bB2(g1h1|10⟩ − g1h2|11⟩ + g2h1|00⟩ + g2h2|01⟩)B1A2

+ |Υ3⟩aA1 |Υ2⟩bB2(g1h1|10⟩ + g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩)B1A2

+ |Υ4⟩aA1 |Υ1⟩bB2(g1h1|10⟩ − g1h2|11⟩ − g2h1|00⟩ − g2h2|01⟩)B1A2

+ |Υ4⟩aA1 |Υ2⟩bB2(g1h1|10⟩ + g1h2|11⟩ − g2h1|00⟩ + g2h2|01⟩)B1A2

+ |Υ3⟩aA1 |Υ3⟩bB2(−g1h1|11⟩ + g1h2|10⟩ + g2h1|01⟩ + g2h2|00⟩)B1A2

+ |Υ3⟩aA1 |Υ4⟩bB2(−g1h1|11⟩ − g1h2|10⟩ + g2h1|01⟩ − g2h2|00⟩)B1A2

+ |Υ4⟩aA1 |Υ3⟩bB2(−g1h1|11⟩ + g1h2|10⟩ − g2h1|01⟩ − g2h2|00⟩)B1A2

+ |Υ4⟩aA1
|Υ4⟩bB2(−g1h1|11⟩ − g1h2|10⟩ − g2h1|01⟩ + g2h2|00⟩)B1A2

].



(10.7)

After that, a quantum phase gate operation given in Chapter 3 on qubits A2 and
B1 is needed to complete the bidirectional quantum teleportation. Here, the
control qubit is A2, whereas B1 is the target qubit. The quantum states then turn
into

|υ1⟩B1A2 = (g1h1|00⟩ + g1h2|01⟩ + g2h1|10⟩ − g2h2|11⟩)B1A2 ,

|υ2⟩B1A2 = (g1h1|00⟩ − g1h2|01⟩ + g2h1|10⟩ + g2h2|11⟩)B1A2 ,

|υ3⟩B1A2 = (g1h1|00⟩ + g1h2|01⟩ − g2h1|10⟩ + g2h2|11⟩)B1A2 ,

|υ4⟩B1A2 = (g1h1|00⟩ − g1h2|01⟩ − g2h1|10⟩ − g2h2|11⟩)B1A2 ,

|υ5⟩B1A2 = (g1h1|01⟩ + g1h2|00⟩ − g2h1|11⟩ + g2h2|10⟩)B1A2 ,

|υ6⟩B1A2 = (g1h1|01⟩ − g1h2|00⟩ − g2h1|11⟩ − g2h2|10⟩)B1A2 ,

|υ7⟩B1A2 = (g1h1|01⟩ + g1h2|00⟩ + g2h1|11⟩ − g2h2|10⟩)B1A2 ,

|υ8⟩B1A2 = (g1h1|01⟩ − g1h2|00⟩ + g2h1|11⟩ + g2h2|10⟩)B1A2 ,

|υ9⟩B1A2 = (g1h1|10⟩ − g1h2|11⟩ + g2h1|00⟩ + g2h2|01⟩)B1A2 ,

|υ10⟩B1A2 = (g1h1|10⟩ + g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩)B1A2 ,

|υ11⟩B1A2 = (g1h1|10⟩ − g1h2|11⟩ − g2h1|00⟩ − g2h2|01⟩)B1A2 ,

|υ12⟩B1A2 = (g1h1|10⟩ + g1h2|11⟩ − g2h1|00⟩ + g2h2|01⟩)B1A2 ,

|υ13⟩B1A2 = (−g1h1|11⟩ + g1h2|10⟩ + g2h1|01⟩ + g2h2|00⟩)B1A2 ,

|υ14⟩B1A2 = (−g1h1|11⟩ − g1h2|10⟩ + g2h1|01⟩ − g2h2|00⟩)B1A2 ,

|υ15⟩B1A2 = (−g1h1|11⟩ + g1h2|10⟩ − g2h1|01⟩ − g2h2|00⟩)B1A2 ,

|υ16⟩B1A2 = (−g1h1|11⟩ − g1h2|10⟩ − g2h1|01⟩ + g2h2|00⟩)B1A2 .



(10.8)

Following the exchange of the classical messages, both parties perform
appropriate unitary operations, which are given in Table 10.1, to obtain the
intended states. Through this procedure, Alice and Bob exchange the quantum
state with each other. However, a successful reconstruction of the transmitted
state is only possible if both participants cooperate. Figure 10.2 illustrates the
complete scenario of the protocol.

Table 10.1

Required unitary operations for Alice and Bob ⏎

|υ
′

1⟩B1A2 = (g1h1|00⟩ + g1h2|01⟩ + g2h1|10⟩ + g2h2|11⟩)B1A2 ,

|υ
′

2⟩B1A2 = (g1h1|00⟩ − g1h2|01⟩ + g2h1|10⟩ − g2h2|11⟩)B1A2 ,

|υ
′

3⟩B1A2 = (g1h1|00⟩ + g1h2|01⟩ − g2h1|10⟩ − g2h2|11⟩)B1A2 ,

|υ
′

4⟩B1A2 = (g1h1|00⟩ − g1h2|01⟩ − g2h1|10⟩ + g2h2|11⟩)B1A2 ,

|υ
′

5⟩B1A2 = (g1h1|01⟩ + g1h2|00⟩ + g2h1|11⟩ + g2h2|10⟩)B1A2 ,

|υ
′

6⟩B1A2 = (g1h1|01⟩ − g1h2|00⟩ + g2h1|11⟩ − g2h2|10⟩)B1A2 ,

|υ
′

7⟩B1A2 = (g1h1|01⟩ + g1h2|00⟩ − g2h1|11⟩ − g2h2|10⟩)B1A2 ,

|υ
′

8⟩B1A2 = (g1h1|01⟩ − g1h2|00⟩ − g2h1|11⟩ + g2h2|10⟩)B1A2 ,

|υ
′

9⟩B1A2 = (g1h1|10⟩ + g1h2|11⟩ + g2h1|00⟩ + g2h2|01⟩)B1A2 ,

|υ
′

10⟩B1A2 = (g1h1|10⟩ − g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩)B1A2 ,

|υ
′

11⟩B1A2 = (g1h1|10⟩ + g1h2|11⟩ − g2h1|00⟩ − g2h2|01⟩)B1A2 ,

|υ
′

12⟩B1A2 = (g1h1|10⟩ − g1h2|11⟩ − g2h1|00⟩ + g2h2|01⟩)B1A2 ,

|υ
′

13⟩B1A2 = (g1h1|11⟩ + g1h2|10⟩ + g2h1|01⟩ + g2h2|00⟩)B1A2 ,

|υ
′

14⟩B1A2 = (g1h1|11⟩ − g1h2|10⟩ + g2h1|01⟩ − g2h2|00⟩)B1A2 ,

|υ
′

15⟩B1A2 = (g1h1|11⟩ + g1h2|10⟩ − g2h1|01⟩ − g2h2|00⟩)B1A2 ,

|υ
′

16⟩B1A2 = (g1h1|11⟩ − g1h2|10⟩ − g2h1|01⟩ + g2h2|00⟩)B1A2 .



Alice'soutcome Bob'soutcome Reducedstate

Alice's unitary

operations

Bob's unitary

operationAlice'soutcome Bob'soutcome Reducedstate

Alice's unitary

operations

Bob's unitary

operation

|Υ1⟩ |Υ1⟩ |υ
′

1⟩B1A2 (I)A2 (I)B1

|Υ1⟩ |Υ2⟩ |υ
′

2⟩B1A2 (ϑz)A2 (I)B1

|Υ2⟩ |Υ1⟩ |υ
′

3⟩B1A2 (I)A2 (ϑz)B1

|Υ2⟩ |Υ2⟩ |υ
′

4⟩B1A2 (ϑz)A2 (ϑz)B1

|Υ1⟩ |Υ3⟩ |υ
′

5⟩B1A2 (ϑx)A2 (I)B1

|Υ1⟩ |Υ4⟩ |υ
′

6⟩B1A2 (ϑzϑx)A2 (I)B1

|Υ2⟩ |Υ3⟩ |υ
′

7⟩B1A2 (ϑx)A2 (ϑz)B1

|Υ2⟩ |Υ4⟩ |υ
′

8⟩B1A2 (ϑzϑx)A2 (ϑz)B1

|Υ3⟩ |Υ1⟩ |υ
′

9⟩B1A2 (I)A2 (ϑx)B1

|Υ3⟩ |Υ2⟩ |υ
′

10⟩B1A2 (ϑz)A2 (ϑx)B1

|Υ4⟩ |Υ1⟩ |υ
′

11⟩B1A2 (I)A2 (ϑzϑx)B1

|Υ4⟩ |Υ2⟩ |υ
′

12⟩B1A2 (ϑz)A2 (ϑzϑx)B1

|Υ3⟩ |Υ3⟩ |υ
′

13⟩B1A2 (ϑx)A2 (ϑx)B1

|Υ3⟩ |Υ4⟩ |υ
′

14⟩B1A2 (ϑzϑx)A2 (ϑx)B1

|Υ4⟩ |Υ3⟩ |υ
′

15⟩B1A2 (ϑx)A2 (ϑzϑx)B1

|Υ4⟩ |Υ4⟩ |υ
′

16⟩B1A2 (ϑzϑx)A2 (ϑzϑx)B1



Figure 10.2  Bidirectional teleportation protocol for exchange of single-qubit states. ⏎

To illustrate, assuming that Alice's and Bob's measurement outcomes are 
|Υ3⟩aA1  and |Υ2⟩bB2 , respectively, the state of the remaining qubits becomes

(g1h1|10⟩ + g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩)B1A2 .

After that, to complete the above bidirectional communication protocol, a
quantum operation is applied on qubits B1, A2 where qubit A2 plays the role of
control qubit whereas qubit B1 is the target qubit. Then the final reduced state
becomes

Finally, Bob and Alice execute appropriate unitary operations on their
respective qubits which are, from Table 10.1, given by (ϑx)B1  and (ϑz)A2 ,

(g1h1|10⟩ − g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩)B1A2

= (g1|1⟩ + g2|0⟩)B1 ⊗ (h1|0⟩ − h2|1⟩)A2 .



respectively. The mutual transfer of qubit states is thereby completed. That is
the end of the protocol.

10.3 ASYMMETRIC BIDIRECTIONAL TELEPORTATION
PROTOCOL OF (2 ↔ 3)-QUBIT STATES

In this section, we explore a bidirectional teleportation protocol characterized
by its asymmetry. Specifically, one party, Alice, wishes to transfer a two-qubit
state to Bob, while simultaneously Bob intends to transmits a three-qubit state
to Alice, which are, respectively, given by

(10.9)

where the complex coefficients g1, g2, h1, h2 meet the normalization
conditions, that is,

2

∑
m=1

|gm|2 = 1,
2

∑
n=1

|hn|2 = 1.

Alice and Bob are connected through a classical communication channel.

The states |ℵ1⟩ and |ℵ2⟩ are unknown to both Alice and Bob except for their
normalizations. The task is intended to be executed in an integrated manner
using a single entanglement resource.

For this purpose, an 8-qubit state is utilized as quantum resource amongst the
parties given by

|ℵ1⟩a1a2
= (g1|00⟩ + g2|11⟩),

|ℵ2⟩b1b2b3
= (h1|000⟩ + h2|111⟩),

|E⟩B1A1B2A2B3A3B4A4 =
1

2
[|00000000⟩ + |10100001⟩

+ |01011110⟩ + |11111111⟩],



(10.10)

where Alice possesses the qubits (A1, A2, A3, A4) and Bob holds the qubits 
(B1, B2, B3, B4).

The total system of 13 qubits is written as

(10.11)

Alice now performs a measurement on her three qubits (a1, a2, A4) using the
basis defined by

(10.12)

and Bob carries out on the basis given by

{|ςi⟩b1b2B3
|Υj⟩b3B4

: i = 1, 2, . . . , 8; j = 1, 2, 3, 4},

where {|Υj⟩b3B4 : j = 1, 2, 3, 4}s are the Bell states given by

|Γ⟩ = |ℵ1⟩a1a2
⊗ |ℵ2⟩b1b2b3

⊗ |E⟩B1A1B2A2B3A3B4A4

= (g1|00⟩ + g2|11⟩)a1a2
⊗ (h1|000⟩ + h2|111⟩)b1b2b3

⊗
1

2
[|00000000⟩

+ |10100001⟩ + |01011110⟩ + |11111111⟩]B1A1B2A2B3A3B4A4
.

|ς1⟩ =
|000⟩ + |111⟩

√2
, |ς2⟩ =

|000⟩ − |111⟩

√2
,

|ς3⟩ =
|001⟩ + |110⟩

√2
, |ς4⟩ =

|001⟩ − |110⟩

√2

|ς5⟩ =
|010⟩ + |101⟩

√2
, |ς6⟩ =

|010⟩ − |101⟩

√2
,

|ς7⟩ =
|011⟩ + |100⟩

√2
, |ς8⟩ =

|011⟩ − |100⟩

√2

1



After the measurements both parties exchange their respective measurement
results through classical channels. Based on their outcomes, the parties execute
appropriate unitary operations to obtain the intended states. The complete
process is shown schematically in Figure 10.3.

Long Description for Figure 10.3

Figure 10.3  Bidirectional teleportation protocol for transferring two- and three-qubit state. ⏎

We discuss the protocol in detail in the following.

|Υ1⟩b3B4 =
1

√2
(|00⟩ + |11⟩),

|Υ2⟩b3B4 =
1

√2
(|00⟩ − |11⟩),

|Υ3⟩b3B4 =
1

√2
(|01⟩ + |10⟩),

|Υ4⟩b3B4 =
1

√2
(|01⟩ − |10⟩).



The composite state |Γ⟩ in Eq. (10.11) can be written as

|Γ⟩ = (h1|000⟩ + h2|111⟩)b1b2b3 ⊗
4

∑
i=1

|ςi⟩a1a2A4 ⊗ |Mi⟩B1A1B2A2B3A3B4 ,

where

Now, Alice makes her measurement using the basis given in Eq. (10.12) and
communicates the outcomes using a classical channel to Bob. There are four
possible outcomes of Alice's measurement. We discuss their consequences in
the following four cases.

Case I:

Suppose that the measurement result of Alice is |ς1⟩a1a2A4 , then the state of the
remaining qubits becomes

(10.13)

The above Eq. (10.13) can be re-expressed as

|M1⟩B1A1B2A2B3A3B4 = g1(|0000000⟩ + |0101111⟩)

+ g2(|1010000⟩ + |1111111⟩),

|M2⟩B1A1B2A2B3A3B4 = g1(|0000000⟩ + |0101111⟩)

− g2(|1010000⟩ + |1111111⟩),

|M3⟩B1A1B2A2B3A3B4 = g1(|1010000⟩ + |1111111⟩)

+ g2(|0000000⟩ + |0101111⟩),

|M4⟩B1A1B2A2B3A3B4 = g1(|1010000⟩ + |1111111⟩)

− g2(|0000000⟩ + |0101111⟩).

|Γ1⟩ = (h1|000⟩ + h2|111⟩)b1b2b3 ⊗ [g1(|0000000⟩ + |0101111⟩)

+ g2(|1010000⟩ + |1111111⟩)]B1A1B2A2B3A3B4 .



Now Bob performs his measurement on the corresponding basis and sends the
measurement outcomes through a classical channel to Alice.

If Bob's measurement result is |ς1⟩b1b2B3 |Υ1⟩b3B4 , the resulting state of the
remaining qubits is as follows:

When Bob obtains |ς1⟩b1b2B3 |Υ2⟩b3B4  as his measurement result, the state of
the rest of the qubits is as follows:

|Γ1⟩ = |ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|00000⟩

+ g1h2|01011⟩ + g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

+ |ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|00000⟩

− g1h2|01011⟩ + g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|00000⟩

− g1h2|01011⟩ + g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|00000⟩

+ g1h2|01011⟩ + g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|01011⟩

+ g1h2|00000⟩ + g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|01011⟩

− g1h2|00000⟩ + g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|01011⟩

− g1h2|00000⟩ + g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|01011⟩

+ g1h2|00000⟩ + g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3 .

(g1h1|00000⟩ + g1h2|01011⟩ + g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|00000⟩ − g1h2|01011⟩ + g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2 ⊗ (h1|000⟩ − h2|111⟩)A1A2A3 .



When Bob obtains |ς2⟩b1b2B3 |Υ1⟩b3B4  as his measurement result, the state of
the rest of the qubits is as follows:

When Bob obtains |ς2⟩b1b2B3
|Υ2⟩b3B4

 as his measurement result, the state of
the rest of the qubits is as follows:

When Bob obtains |ς3⟩b1b2B3 |Υ3⟩b3B4  as his measurement result, the state of
the rest of the qubits is as follows:

When Bob obtains |ς3⟩b1b2B3
|Υ4⟩b3B4

 as his measurement result, the state of
the rest of the qubits is as follows:

When Bob obtains |ς4⟩b1b2B3 |Υ3⟩b3B4  as his measurement result, the state of
the rest of the qubits is as follows:

When Bob obtains |ς4⟩b1b2B3
|Υ4⟩b3B4

 as his measurement result, the state of
the rest of the qubits is as follows:

(g1h1|00000⟩ − g1h2|01011⟩ + g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2
⊗ (h1|000⟩ − h2|111⟩)A1A2A3

.

(g1h1|00000⟩ + g1h2|01011⟩ + g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|01011⟩ + g1h2|00000⟩ + g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2
⊗ (h1|111⟩ + h2|000⟩)A1A2A3

.

(g1h1|01011⟩ − g1h2|00000⟩ + g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3 .

(g1h1|01011⟩ − g1h2|00000⟩ + g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3
.

(g1h1|01011⟩ + g1h2|00000⟩ + g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ + g2|11⟩)B1B2 ⊗ (h1|111⟩ + h2|000⟩)A1A2A3 .



Finally, to reconstruct the original quantum state, Alice and Bob each applies a
suitable unitary operation on their respective qubits. Details of the unitary
operations for Case I are provided in Table 10.2.

Table 10.2

Required unitary operations for Alice and Bob for Case I ⏎

Bob's outcome Alice's unitary operation Bob's unitary operation

|ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (I ⊗ I)B1B2

|ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 (ϑz ⊗ I ⊗ I)A1A2A3 (I ⊗ I)B1B2

|ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 (I ⊗ ϑz ⊗ I)A1A2A3 (I ⊗ I)B1B2

|ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (I ⊗ I)B1B2

|ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (I ⊗ I)B1B2

|ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑzϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (I ⊗ I)B1B2

|ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑzϑx ⊗ ϑx)A1A2A3 (I ⊗ I)B1B2

|ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (I ⊗ I)B1B2

Case II:

Suppose that Alice's measurement result is |ς2⟩a1a2A4 , then the reduced state of
the remaining qubits is

(10.14)

The above reduced state Eq. (10.14) can be expressed as

|Γ2⟩ = (h1|000⟩ + h2|111⟩)b1b2b3
⊗ [g1(|0000000⟩ + |0101111⟩)

− g2(|1010000⟩ + |1111111⟩)]B1A1B2A2B3A3B4
.



Now Bob makes his measurement on the basis mentioned above and transmits
it to Alice by the use of a classical channel.

If the measurement performed by Bob yields |ς1⟩b1b2B3 |Υ1⟩b3B4 , then the rest
of the system is described by the state

If the measurement performed by Bob yields |ς1⟩b1b2B3 |Υ2⟩b3B4 , then the rest
of the system evolves into the state

|Γ2⟩ = |ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|00000⟩

+ g1h2|01011⟩ − g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

+ |ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|00000⟩

− g1h2|01011⟩ − g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|00000⟩

− g1h2|01011⟩ − g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|00000⟩

+ g1h2|01011⟩ − g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|01011⟩

+ g1h2|00000⟩ − g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|01011⟩

− g1h2|00000⟩ − g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|01011⟩

− g1h2|00000⟩ − g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|01011⟩

+ g1h2|00000⟩ − g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3 .

(g1h1|00000⟩ + g1h2|01011⟩ − g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|00000⟩ − g1h2|01011⟩ − g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2 ⊗ (h1|000⟩ − h2|111⟩)A1A2A3 .



If the measurement performed by Bob yields |ς2⟩b1b2B3 |Υ1⟩b3B4 , then the rest
of the system is described by the state

If the measurement performed by Bob yields |ς2⟩b1b2B3
|Υ2⟩b3B4

, then the rest
of the system is described by the state

If the measurement performed by Bob yields |ς3⟩b1b2B3 |Υ3⟩b3B4 , then the rest
of the system is described by the state

If the measurement performed by Bob yields |ς3⟩b1b2B3
|Υ4⟩b3B4

, then the rest
of the system is described by the state

If the measurement performed by Bob yields |ς4⟩b1b2B3 |Υ3⟩b3B4 , then the rest
of the system is described by the state

If the measurement performed by Bob yields |ς4⟩b1b2B3
|Υ4⟩b3B4

, then the rest
of the system is described by the state

(g1h1|00000⟩ − g1h2|01011⟩ − g2h1|10100⟩ + g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2
⊗ (h1|000⟩ − h2|111⟩)A1A2A3

.

(g1h1|00000⟩ + g1h2|01011⟩ − g2h1|10100⟩ − g2h2|11111⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|01011⟩ + g1h2|00000⟩ − g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2
⊗ (h1|111⟩ + h2|000⟩)A1A2A3

.

(g1h1|01011⟩ − g1h2|00000⟩ − g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3 .

(g1h1|01011⟩ − g1h2|00000⟩ − g2h1|11111⟩ + g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3
.

(g1h1|01011⟩ + g1h2|00000⟩ − g2h1|11111⟩ − g2h2|10100⟩)B1A1B2A2A3

= (g1|00⟩ − g2|11⟩)B1B2 ⊗ (h1|111⟩ + h2|000⟩)A1A2A3 .



In the final step, Alice and Bob perform appropriate unitary transformations to
retrieve the initial state. In Case II, the unitary operations are listed in Table
10.3.

Table 10.3

Appropriate unitary operation performed by
Alice and Bob for Case II ⏎

Bob's outcome

Alice's unitary

operation

Bob's unitary

operation

|ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (I ⊗ ϑz)B1B2

|ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ ϑz ⊗ I)A1A2A3 (ϑz ⊗ I)B1B2

|ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 (ϑz ⊗ I ⊗ I)A1A2A3 (ϑz ⊗ I)B1B2

|ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (I ⊗ ϑz)B1B2

|ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (ϑz ⊗ I)B1B2

|ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑzϑx)A1A2A3 (I ⊗ ϑz)B1B2

|ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑzϑx ⊗ ϑx)A1A2A3 (ϑz ⊗ I)B1B2

|ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (I ⊗ ϑz)B1B2

Case III:

Suppose that the measurement result of Alice is |ς3⟩a1a2A4 , then the state of the
remaining qubits becomes

(10.15)

The above reduced state, given in Eq. (10.15), can be re-written as

|Γ3⟩ = (h1|000⟩ + h2|111⟩)b1b2b3
⊗ [g1(|1010000⟩ + |1111111⟩)

+ g2(|0000000⟩ + |0101111⟩)]B1A1B2A2B3A3B4
.



Now Bob performs his measurement on the corresponding basis and sends the
measurement results to Alice via a classical channel.

After Bob measures his qubits and finds them in state |ς1⟩b1b2B3 |Υ1⟩b3B4 , the
other qubits in the system are described by the state

After Bob measures his qubits and finds them in state |ς1⟩b1b2B3 |Υ2⟩b3B4 , the
other qubits in the system are described by the state

|Γ3⟩ = |ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|10100⟩

+ g1h2|11111⟩ + g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

+ |ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|10100⟩

− g1h2|11111⟩ + g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|10100⟩

− g1h2|11111⟩ + g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|10100⟩

+ g1h2|11111⟩ + g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|11111⟩

+ g1h2|10100⟩ + g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|11111⟩

− g1h2|10100⟩ + g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|11111⟩

− g1h2|10100⟩ + g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|11111⟩

+ g1h2|10100⟩ + g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3 .

(g1h1|10100⟩ + g1h2|11111⟩ + g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|10100⟩ − g1h2|11111⟩ + g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2 ⊗ (h1|000⟩ − h2|111⟩)A1A2A3 .



After Bob measures his qubits and finds them in state |ς2⟩b1b2B3 |Υ1⟩b3B4 , the
other qubits in the system are described by the state

After Bob measures his qubits and finds them in state |ς2⟩b1b2B3
|Υ2⟩b3B4

, the
other qubits in the system are described by the state

After Bob measures his qubits and finds them in state |ς3⟩b1b2B3 |Υ3⟩b3B4 , the
other qubits in the system are described by the state

After Bob measures his qubits and finds them in state |ς3⟩b1b2B3
|Υ4⟩b3B4

, the
other qubits in the system are described by the state

After Bob measures his qubits and finds them in state |ς4⟩b1b2B3 |Υ3⟩b3B4 , the
other qubits in the system are described by the state

After Bob measures his qubits and finds them in state |ς4⟩b1b2B3
|Υ4⟩b3B4

, the
other qubits in the system are described by the state

(g1h1|10100⟩ − g1h2|11111⟩ + g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2
⊗ (h1|000⟩ − h2|111⟩)A1A2A3

.

(g1h1|10100⟩ + g1h2|11111⟩ + g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|11111⟩ + g1h2|10100⟩ + g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2
⊗ (h1|111⟩ + h2|000⟩)A1A2A3

.

(g1h1|11111⟩ − g1h2|10100⟩ + g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3 .

(g1h1|11111⟩ − g1h2|10100⟩ + g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3
.

(g1h1|11111⟩ + g1h2|10100⟩ + g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ + g2|00⟩)B1B2 ⊗ (h1|111⟩ + h2|000⟩)A1A2A3 .



Finally, to recover the intended state, Alice and Bob perform appropriate
unitary operations on her/his qubits, respectively. The unitary operations
corresponding to Case III are summarized in Table 10.4.

Table 10.4

Appropriate unitary operation performed by Alice
and Bob for Case III ⏎

Bob's outcome Alice's unitary operation Bob's unitary operation

|ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ ϑz ⊗ I)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 (ϑz ⊗ I ⊗ I)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑzϑx)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑzϑx)A1A2A3 (ϑx ⊗ ϑx)B1B2

|ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (ϑx ⊗ ϑx)B1B2

Case IV:

Suppose that the measurement result of Alice is |ς4⟩a1a2A4 , then the state of the
remaining qubits becomes

(10.16)

The reduced state given in Eq. (10.16) can be written as

|Γ4⟩ = (h1|000⟩ + h2|111⟩)b1b2b3
⊗ [g1(|1010000⟩ + |1111111⟩)

− g2(|0000000⟩ + |0101111⟩)]B1A1B2A2B3A3B4
.



Now Bob executes his measurement on the corresponding basis and sends the
measurement results to Alice via a classical channel.

Suppose that his measurement outcome is |ς1⟩b1b2B3 |Υ1⟩b3B4 , the resulting
state of the remaining qubits is as follows:

Suppose that his measurement outcome is |ς1⟩b1b2B3 |Υ2⟩b3B4 , the resulting
state of the remaining qubits is as follows:

|Γ4⟩ = |ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|10100⟩

+ g1h2|11111⟩ − g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

+ |ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|10100⟩

− g1h2|11111⟩ − g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 ⊗ (g1h1|10100⟩

− g1h2|11111⟩ − g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

+ |ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 ⊗ (g1h1|10100⟩

+ g1h2|11111⟩ − g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|11111⟩

+ g1h2|10100⟩ − g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

+ |ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|11111⟩

− g1h2|10100⟩ − g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 ⊗ (g1h1|11111⟩

− g1h2|10100⟩ − g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

+ |ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 ⊗ (g1h1|11111⟩

+ g1h2|10100⟩ − g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3 .

(g1h1|10100⟩ + g1h2|11111⟩ − g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|10100⟩ − g1h2|11111⟩ − g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2 ⊗ (h1|000⟩ − h2|111⟩)A1A2A3 .



Suppose that his measurement outcome is |ς2⟩b1b2B3 |Υ1⟩b3B4 , the resulting
state of the remaining qubits is as follows:

Suppose that his measurement outcome is |ς2⟩b1b2B3
|Υ2⟩b3B4

, the resulting
state of the remaining qubits is as follows:

Suppose that his measurement outcome is |ς3⟩b1b2B3 |Υ3⟩b3B4 , the resulting
state of the remaining qubits is as follows:

Suppose that his measurement outcome is |ς3⟩b1b2B3
|Υ4⟩b3B4

, the resulting
state of the remaining qubits is as follows:

Suppose that his measurement outcome is |ς4⟩b1b2B3 |Υ3⟩b3B4 , the resulting
state of the remaining qubits is as follows:

Suppose that his measurement outcome is |ς4⟩b1b2B3
|Υ4⟩b3B4

, the resulting
state of the remaining qubits is as follows:

(g1h1|10100⟩ − g1h2|11111⟩ − g2h1|00000⟩ + g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2
⊗ (h1|000⟩ − h2|111⟩)A1A2A3

.

(g1h1|10100⟩ + g1h2|11111⟩ − g2h1|00000⟩ − g2h2|01011⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2 ⊗ (h1|000⟩ + h2|111⟩)A1A2A3 .

(g1h1|11111⟩ + g1h2|10100⟩ − g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2
⊗ (h1|111⟩ + h2|000⟩)A1A2A3

.

(g1h1|11111⟩ − g1h2|10100⟩ − g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3 .

(g1h1|11111⟩ − g1h2|10100⟩ − g2h1|01011⟩ + g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2 ⊗ (h1|111⟩ − h2|000⟩)A1A2A3
.

(g1h1|11111⟩ + g1h2|10100⟩ − g2h1|01011⟩ − g2h2|00000⟩)B1A1B2A2A3

= (g1|11⟩ − g2|00⟩)B1B2 ⊗ (h1|111⟩ + h2|000⟩)A1A2A3 .



Finally, to recover the intended states, Alice and Bob perform appropriate
unitary operations on their respective qubits. A detailed overview of the
unitary operations for Case IV is given in Table 10.5.

Table 10.5

Appropriate unitary operation performed by
Alice and Bob for Case IV ⏎

Bob's outcome

Alice's unitary

operation

Bob's unitary

operation

|ς1⟩b1b2B3 ⊗ |Υ1⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (ϑzϑx ⊗ ϑx)B1B2

|ς1⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ ϑz ⊗ I)A1A2A3 (ϑx ⊗ ϑzϑx)B1B2

|ς2⟩b1b2B3 ⊗ |Υ1⟩b3B4 (ϑz ⊗ I ⊗ I)A1A2A3 (ϑzϑx ⊗ ϑx)B1B2

|ς2⟩b1b2B3 ⊗ |Υ2⟩b3B4 (I ⊗ I ⊗ I)A1A2A3 (ϑx ⊗ ϑzϑx)B1B2

|ς3⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (ϑx ⊗ ϑzϑx)B1B2

|ς3⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑzϑx)A1A2A3 (ϑzϑx ⊗ ϑx)B1B2

|ς4⟩b1b2B3 ⊗ |Υ3⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑzϑx)A1A2A3 (ϑx ⊗ ϑzϑx)B1B2

|ς4⟩b1b2B3 ⊗ |Υ4⟩b3B4 (ϑx ⊗ ϑx ⊗ ϑx)A1A2A3 (ϑzϑx ⊗ ϑx)B1B2

The bidirectional exchange of state is thus completed.



11 Controlled Teleportation Protocols
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11.1 INTRODUCTION
In this chapter, teleportation under supervision, that is, controlled teleportation process is
described. Particularly, we describe controlled bidirectional and cyclic teleportation
protocols. Some other works on teleportation under supervision are listed in [30, 31, 53,
73, 74, 87, 90, 91, 93, 124, 141, 142, 150, 154, 172, 195, 202]. Particularly, teleportation
protocols under multiple and hierarchical control have appeared in works like [17, 65, 138,
182, 183, 184, 192].

11.2 BIDIRECTIONAL CONTROLLED TELEPORTATION PROTOCOL
OF TWO SINGLE-QUBIT STATES

In this chapter, we explore the role of controller in teleportation protocol. These protocols
which are performed under the supervision of a controller (sometimes called a supervisor)
are known as controlled teleportation protocols. A controller is a party who acts toward the
end of the protocol and signals for the ultimate steps to be executed for the completion of
the process. If the controller is not satisfied by the performances of the other parties, then
the controller can withhold his action in which case the teleportation process cannot be
completed. In this section we describe a bi-directional teleportation scheme while in the
following section a cyclic teleportation protocol is presented.

We consider the problem of exchange of two single-qubit quantum states between two
parties Alice and Bob with the help of a third party Charlie, who acts as a controller in this
protocol. Here, both Alice and Bob act as a sender as well as a receiver. The protocol we
describe for performing the above task is a controlled bi-directional protocol given by Zha
et al. [196].

https://doi.org/10.1201/9781003561439-11


Suppose that Alice wants to transfer to Bob the quantum state given by

|ℵ1⟩a = (g1|0⟩ + g2|1⟩)

(11.1)

and that Bob wants to transfer to Alice the quantum state given by

|ℵ2⟩b = (h1|0⟩ + h2|1⟩),

(11.2)

where all the coefficients satisfy the normalization conditions, that is,

|g1|2 + |g2|2 = 1

and

|h1|2 + |h2|2 = 1.

There is another party, Charlie by name, who is the controller of the protocol.

A five-qubit cluster state is used as a quantum channel to achieve this job by connecting
three mutually separated parties, which has the form:

|E⟩ =
1

2
(|00000⟩ + |00111⟩ + |11010⟩ + |11101⟩)A1B1A2CB2

,

(11.3)

where the qubits (A1, A2), (B1B2) and C are in the possessions of Alice, Bob and Charlie,
respectively. The entanglement generation process for the state (11.3) is shown in Figure
11.2. Further, all the parties are connected by classical channels amongst themselves.

The total system of seven qubits can be written as:

(11.4)

|Γ⟩ = |ℵ1⟩a ⊗ |ℵ2⟩b ⊗ |E⟩A1B1A2CB2

= (g1|0⟩ + g2|1⟩)a ⊗ (h1|0⟩ + h2|1⟩)b ⊗
1

2
(|00000⟩ + |00111⟩

+ |11010⟩ + |11101⟩)A1B1A2CB2 .



For this communication process Alice and Bob both execute measurements with Bell basis
described as

(11.5)

on their pairs of qubits (a, A1) and (b, B2), respectively, and finally, the controller Charlie
makes a von Neumann measurement on his qubit C on the basis given by

(11.6)

Considering the basis discussed in Eq. (11.5) and the basis given by Eq. (11.6), the
composite state |Γ⟩ in Eq. (11.4) can be written as (ignoring the constant factor)

where |υijk⟩B1A2
 's are given by

|Υ1⟩aA1/bB2
=

1

√2
(|00⟩ + |11⟩),

|Υ2⟩aA1/bB2
=

1

√2
(|00⟩ − |11⟩),

|Υ3⟩aA1/bB2
=

1

√2
(|01⟩ + |10⟩),

|Υ4⟩aA1/bB2
=

1

√2
(|01⟩ − |10⟩),

|ζ1⟩C =
1

√2
(|0⟩ + |1⟩),

|ζ2⟩C =
1

√2
(|0⟩ − |1⟩).

|Γ⟩ = (g1|0⟩ + g2|1⟩)a ⊗ (h1|0⟩ + h2|1⟩)b ⊗
1

2
(|00000⟩ + |00111⟩

+ |11010⟩ + |11101⟩)A1B1A2CB2

=
4

∑
i=1

4

∑
j=1

2

∑
k=1

|Υi⟩aA1 ⊗ |Υj⟩bB2 ⊗ |ζk⟩C ⊗ |υijk⟩B1A2



Now Alice and Bob make Bell basis measurements on their respective qubits. After the
completion of the measurements, Alice (Bob) sends her (his) measurement outcomes to
Bob (Alice) and Charlie through some classical channels. At this stage, Charlie plays an

|υ111⟩B1A2 = g1h1|00⟩ + g1h2|01⟩ + g2h1|10⟩ + g2h2|11⟩,

|υ112⟩B1A2 = g1h1|00⟩ − g1h2|01⟩ − g2h1|10⟩ + g2h2|11⟩,

|υ121⟩B1A2 = g1h1|00⟩ − g1h2|01⟩ + g2h1|10⟩ − g2h2|11⟩,

|υ122⟩B1A2 = g1h1|00⟩ + g1h2|01⟩ − g2h1|10⟩ − g2h2|11⟩,

|υ211⟩B1A2 = g1h1|00⟩ + g1h2|01⟩ − g2h1|10⟩ − g2h2|11⟩,

|υ212⟩B1A2 = g1h1|00⟩ − g1h2|01⟩ + g2h1|10⟩ − g2h2|11⟩,

|υ221⟩B1A2 = g1h1|00⟩ − g1h2|01⟩ − g2h1|10⟩ + g2h2|11⟩,

|υ222⟩B1A2 = g1h1|00⟩ + g1h2|01⟩ + g2h1|10⟩ + g2h2|11⟩,

|υ131⟩B1A2 = g1h1|01⟩ + g1h2|00⟩ + g2h1|11⟩ + g2h2|10⟩,

|υ132⟩B1A2 = −g1h1|01⟩ + g1h2|00⟩ + g2h1|11⟩ − g2h2|10⟩,

|υ141⟩B1A2 = g1h1|01⟩ − g1h2|00⟩ + g2h1|11⟩ − g2h2|10⟩,

|υ142⟩B1A2 = −g1h1|01⟩ − g1h2|00⟩ + g2h1|11⟩ + g2h2|10⟩,

|υ231⟩B1A2 = g1h1|01⟩ + g1h2|00⟩ − g2h1|11⟩ − g2h2|10⟩,

|υ232⟩B1A2 = −g1h1|01⟩ + g1h2|00⟩ − g2h1|11⟩ + g2h2|10⟩,

|υ241⟩B1A2 = g1h1|01⟩ − g1h2|00⟩ − g2h1|11⟩ + g2h2|10⟩,

|υ242⟩B1A2 = −g1h1|01⟩ − g1h2|00⟩ − g2h1|11⟩ − g2h2|10⟩,

|υ311⟩B1A2 = g1h1|10⟩ + g1h2|11⟩ + g2h1|00⟩ + g2h2|01⟩,

|υ312⟩B1A2 = −g1h1|10⟩ + g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩,

|υ321⟩B1A2 = g1h1|10⟩ − g1h2|11⟩ + g2h1|00⟩ − g2h2|01⟩,

|υ322⟩B1A2 = −g1h1|10⟩ − g1h2|11⟩ + g2h1|00⟩ + g2h2|01⟩,

|υ411⟩B1A2 = g1h1|10⟩ + g1h2|11⟩ − g2h1|00⟩ − g2h2|01⟩,

|υ412⟩B1A2 = −g1h1|10⟩ + g1h2|11⟩ − g2h1|00⟩ + g2h2|01⟩,

|υ421⟩B1A2 = g1h1|10⟩ − g1h2|11⟩ − g2h1|00⟩ + g2h2|01⟩,

|υ422⟩B1A2 = −g1h1|10⟩ − g1h2|11⟩ − g2h1|00⟩ − g2h2|01⟩,

|υ331⟩B1A2
= g1h1|11⟩ + g1h2|10⟩ + g2h1|01⟩ + g2h2|00⟩,

|υ332⟩B1A2
= g1h1|11⟩ − g1h2|10⟩ − g2h1|01⟩ + g2h2|00⟩,

|υ341⟩B1A2
= g1h1|11⟩ − g1h2|10⟩ + g2h1|01⟩ − g2h2|00⟩,

|υ342⟩B1A2
= g1h1|11⟩ + g1h2|10⟩ − g2h1|01⟩ − g2h2|00⟩,

|υ431⟩B1A2
= g1h1|11⟩ + g1h2|10⟩ − g2h1|01⟩ − g2h2|00⟩,

|υ432⟩B1A2
= g1h1|11⟩ − g1h2|10⟩ + g2h1|01⟩ − g2h2|00⟩,

|υ441⟩B1A2
= g1h1|11⟩ − g1h2|10⟩ − g2h1|01⟩ + g2h2|00⟩,

|υ442⟩B1A2
= g1h1|11⟩ + g1h2|10⟩ + g2h1|01⟩ + g2h2|00⟩.



important role for completion of the protocol. Before making a decision Charlie carefully
examines every concerned circumstances. If, even at the very last moment, Charlie
observes something wrong, he will stop the protocol by doing nothing! Otherwise, he
performs measurement on his single qubit C in the basis given in Eq. (11.6). After the
measurement, Charlie sends his outcome to Alice and Bob through classical channels. By
getting these information from Charlie, Alice and Bob make appropriate unitary operations
on their remaining qubits which are given in the following Table 11.1 and Table 11.2 and
thereby complete the exchange of qubit states. This is end of the protocol. The whole
scenario is depicted in Figure 11.1.

Table 11.1

Alice's and Bob's unitary operation conditioned on Bob's, Alice's
and Charlie's measurement results ⏎

Alice's

result

Bob's

result

Charlie's

result

Reduced

state

Alice's unitary

operation

Bob's unitary

operation

|Υ1⟩aA1 |Υ1⟩bB2 |ζ1⟩C |υ111⟩B1A2 (I)A2 (I)B1

|Υ1⟩aA1 |Υ1⟩bB2 |ζ2⟩C |υ112⟩B1A2 (ϑz)A2 (ϑz)B1

|Υ1⟩aA1 |Υ2⟩bB2 |ζ1⟩C |υ121⟩B1A2 (ϑz)A2 (I)B1

|Υ1⟩aA1 |Υ2⟩bB2 |ζ2⟩C |υ122⟩B1A2 (I)A2 (ϑz)B1

|Υ2⟩aA1 |Υ1⟩bB2 |ζ1⟩C |υ211⟩B1A2 (I)A2 (ϑz)B1

|Υ2⟩aA1 |Υ1⟩bB2 |ζ2⟩C |υ212⟩B1A2 (ϑz)A2 (I)B1

|Υ2⟩aA1 |Υ2⟩bB2 |ζ1⟩C |υ221⟩B1A2 (ϑz)A2 (ϑz)B1

|Υ2⟩aA1 |Υ2⟩bB2 |ζ2⟩C |υ222⟩B1A2 (I)A2 (I)B1

|Υ1⟩aA1 |Υ3⟩bB2 |ζ1⟩C |υ131⟩B1A2 (ϑx)A2 (I)B1

|Υ1⟩aA1 |Υ3⟩bB2 |ζ2⟩C |υ132⟩B1A2 (ϑzϑx)A2 (ϑxϑzϑx)B1

|Υ1⟩aA1 |Υ4⟩bB2 |ζ1⟩C |υ141⟩B1A2 (ϑzϑx)A2 (I)B1

|Υ1⟩aA1 |Υ4⟩bB2 |ζ2⟩C |υ142⟩B1A2 (ϑx)A2 (ϑxϑzϑx)B1

|Υ2⟩aA1 |Υ3⟩bB2 |ζ1⟩C |υ231⟩B1A2 (ϑx)A2 (ϑz)B1

|Υ2⟩aA1 |Υ3⟩bB2 |ζ2⟩C |υ232⟩B1A2 (ϑzϑx)A2 (ϑzϑxϑzϑx)B1

|Υ2⟩aA1 |Υ4⟩bB2 |ζ1⟩C |υ241⟩B1A2 (ϑzϑx)A2 (ϑz)B1

|Υ2⟩aA1 |Υ4⟩bB2 |ζ2⟩C |υ242⟩B1A2 (ϑx)A2 (ϑzϑxϑzϑx)B1



Table 11.2

Continued: Alice's and Bob's unitary operation conditioned on
Bob's, Alice's and Charlie's measurement results ⏎

Alice's

result

Bob's

result

Charlie's

result

Reduced

state

Alice's unitary

operation

Bob's unitary

operation

|Υ3⟩aA1 |Υ1⟩bB2 |ζ1⟩C |υ311⟩B1A2 (I)A2 (ϑx)B1

|Υ3⟩aA1 |Υ1⟩bB2 |ζ2⟩C |υ312⟩B1A2 (ϑz)A2 (ϑxϑz)B1

|Υ3⟩aA1 |Υ2⟩bB2 |ζ1⟩C |υ321⟩B1A2 (ϑz)A2 (ϑx)B1

|Υ3⟩aA1 |Υ2⟩bB2 |ζ2⟩C |υ322⟩B1A2 (I)A2 (ϑxϑz)B1

|Υ4⟩aA1 |Υ1⟩bB2 |ζ1⟩C |υ411⟩B1A2 (I)A2 (ϑzϑx)B1

|Υ4⟩aA1 |Υ1⟩bB2 |ζ2⟩C |υ412⟩B1A2 (ϑz)A2 (ϑzϑxϑz)B1

|Υ4⟩aA1 |Υ2⟩bB2 |ζ1⟩C |υ421⟩B1A2 (ϑz)A2 (ϑzϑx)B1

|Υ4⟩aA1 |Υ2⟩bB2 |ζ2⟩C |υ422⟩B1A2 (I)A2 (ϑzϑxϑz)B1

|Υ3⟩aA1 |Υ3⟩bB2 |ζ1⟩C |υ331⟩B1A2 (ϑx)A2 (ϑx)B1

|Υ3⟩aA1 |Υ3⟩bB2 |ζ2⟩C |υ332⟩B1A2 (ϑzϑx)A2 (ϑzϑx)B1

|Υ3⟩aA1 |Υ4⟩bB2 |ζ1⟩C |υ341⟩B1A2 (ϑzϑx)A2 (ϑx)B1

|Υ3⟩aA1 |Υ4⟩bB2 |ζ2⟩C |υ342⟩B1A2 (ϑx)A2 (ϑzϑx)B1

|Υ4⟩aA1 |Υ3⟩bB2 |ζ1⟩C |υ431⟩B1A2 (ϑx)A2 (ϑzϑx)B1

|Υ4⟩aA1 |Υ3⟩bB2 |ζ2⟩C |υ432⟩B1A2 (ϑzϑx)A2 (ϑx)B1

|Υ4⟩aA1 |Υ4⟩bB2 |ζ1⟩C |υ441⟩B1A2 (ϑzϑx)A2 (ϑzϑx)B1

|Υ4⟩aA1 |Υ4⟩bB2 |ζ2⟩C |υ442⟩B1A2 (ϑx)A2 (ϑx)B1



Figure 11.1  Schematic diagram of controlled bi-directional single-qubit quantum teleportation process. ⏎



Figure 11.2  Circuit diagram for generation of entangled state |E⟩ given in Eq. (11.3). ⏎

As an illustration, suppose Alice's, Bob's and Charlie's measurement outcomes are |Υ4⟩aA1

, |Υ3⟩bB2  and |ζ2⟩C , respectively, then the state of the remaining qubits becomes

After receiving the classical information from the controller Charlie, Alice and Bob
perform appropriate unitary operations, which are from Table 11.2 respectively given by, 
(ϑzϑx)A2

 and (ϑx)B1
, on their respective qubits to recover the original quantum state. The

goal of the protocol is thereby achieved.

11.3 CYCLIC CONTROLLED TELEPORTATION PROTOCOL
AMONGST THREE PARTIES

We present here a cyclic teleportation process under a controller. The protocol has been
developed by Zhi-wen Sang [143]. Here, we consider a scheme where three parties Alice,
Bob and Charlie situated far apart from each other and each of them possesses an arbitrary
single-qubit state without knowing any information of the state. These states in the
possessions of Alice, Bob and Charlie are, respectively, given by

(11.7)

where the coefficients g1, g2, h1, h2, f1, f2 satisfy the normalization condition, that is,

|g1|2 + |g2|2 = 1,

|h1|2 + |h2|2 = 1,

|f1|2 + |f2|2 = 1.

Now Alice wants to transfer her single-qubit state |ℵ1⟩a to Bob, Bob wants to transfer his
single-qubit state |ℵ2⟩b to Charlie and Charlie wants to transfer his single-qubit state |ℵ3⟩c

to Alice. There is another party, namely David, whose role in the scheme is of a controller

|υ432⟩B1A2
= g1h1|11⟩ − g1h2|10⟩ + g2h1|01⟩ − g2h2|00⟩

= (g1|1⟩ + g2|0⟩)B1
⊗ (h1|1⟩ − h2|0⟩)A2

.

|ℵ1⟩a = (g1|0⟩ + g2|1⟩),

|ℵ2⟩b = (h1|0⟩ + h2|1⟩),

|ℵ3⟩c = (f1|0⟩ + f2|1⟩),



from beginning to end of the scheme and without his action the scheme cannot be
completed. To initiate the scheme, suppose that Alice, Bob, Charlie and David share a
seven-qubit entangled state, which is given by

(11.8)

Long Description for Figure 11.3

Figure 11.3  Schematic diagram for cyclic controlled teleportation protocol. ⏎

where Alice possesses the qubits (A1, A2), Bob possesses the qubits (B1, B2), Charlie
possesses the qubits (C1, C2) and the qubit D belongs to the controller David. The
generation of quantum resource is shown in Figure 11.4. The state of the total quantum
system can be written as

|E⟩A1A2B1B2C1C2D =
1

2√2
(|0101010⟩ + |0001111⟩ + |0111001⟩ + |0011100⟩

+ |1100011⟩ + |1000110⟩ + |1110000⟩ + |1010101⟩),



|Γ⟩ = |ℵ1⟩a ⊗ |ℵ2⟩b ⊗ |ℵ3⟩c ⊗ |E⟩A1A2B1B2C1C2D.

(11.9)

Figure 11.4  Circuit diagram for generation of entangled state |E⟩ given in Eq. (11.8). ⏎

Further there are classical channels connecting all the four parties with one another.

In order to realize the quantum controlled cyclic teleportation, Alice applies a complete
Bell-basis measurement on her qubits (a, A1) which are given by

Using this basis, the above combined state can be written as (ignoring the constant factor)

|Υ1⟩aA1 =
1

√2
(|00⟩ + |11⟩),

|Υ2⟩aA1 =
1

√2
(|00⟩ − |11⟩),

|Υ3⟩aA1 =
1

√2
(|01⟩ + |10⟩),

|Υ4⟩aA1 =
1

√2
(|01⟩ − |10⟩).



(11.10)

After the measurement of Alice, she publicly announces her measurement outcomes
through a 2-bit of classical message. Suppose Alice's measurement outcome is |Υ2⟩aA1 ,
then the state of the remaining qubits is reduced to the state

(11.11)

Subsequently, Bob performs a measurement on his own qubits (b, B1) in the basis given
by

|Υ1⟩bB1 =
1

√2
(|00⟩ + |11⟩), |Υ2⟩bB1 =

1

√2
(|00⟩ − |11⟩),

|Γ⟩abcA1A2B1B2C1C2D = (h1|0⟩ + h2|1⟩)b ⊗ (f1|0⟩ + f2|1⟩)c

⊗ [|Υ1⟩aA1
⊗ {g1(|101010⟩ + |001111⟩ + |111001⟩ + |011100⟩)

+ g2(|100011⟩ + |000110⟩ + |110000⟩ + |010101⟩)}

+ |Υ2⟩aA1
⊗ {g1(|101010⟩ + |001111⟩ + |111001⟩ + |011100⟩)

− g2(|100011⟩ + |000110⟩ + |110000⟩ + |010101⟩)}

+ |Υ3⟩aA1
⊗ {g1(|100011⟩ + |000110⟩ + |110000⟩ + |010101⟩)

+ g2(|101010⟩ + |001111⟩ + |111001⟩ + |011100⟩)}

+ |Υ4⟩aA1
⊗ {g1(|100011⟩ + |000110⟩ + |110000⟩ + |010101⟩)

− g2(|101010⟩ + |001111⟩ + |111001⟩ + |011100⟩)}].

|Γ1⟩bcA2B1B2C1C2D = (h1|0⟩ + h2|1⟩)b ⊗ (f1|0⟩ + f2|1⟩)c

⊗ [g1(|101010⟩ + |001111⟩ + |111001⟩ + |011100⟩)

− g2(|100011⟩ + |000110⟩ + |110000⟩ + |010101⟩)].

1



Using this basis the above reduced state |Γ1⟩bcA2B1B2C1C2D can be written as (ignoring the
constant factor)

(11.12)

After the measurement of Bob, he publicly announces his measurement results through a
2-bit classical message. Suppose Bob's measurement outcome is |Υ3⟩bB1 , then the state of
the remaining qubits is reduced to the state

|Υ3⟩bB1 =
1

√2
(|01⟩ + |10⟩),

|Υ4⟩bB1 =
1

√2
(|01⟩ − |10⟩).

|Γ1⟩bcA2B1B2C1C2D = (f1|0⟩ + f2|1⟩)c

⊗ [|Υ1⟩bB1 ⊗{g1h1(|11010⟩+|01111⟩)+g1h2(|11001⟩+|01100⟩)

− g2h1(|10011⟩+|00110⟩)−g2h2(|10000⟩+|00101⟩)}

+ |Υ2⟩bB1 ⊗ {g1h1(|11010⟩+|01111⟩)−g1h2(|11001⟩+|01100⟩)

− g2h1(|10011⟩+|00110⟩)+g2h2(|10000⟩+|00101⟩)}

+ |Υ3⟩bB1 ⊗ {g1h1(|11001⟩+|01100⟩)+g1h2(|11010⟩+|01111⟩)

− g2h1(|10000⟩|00101⟩)−g2h2(|10011⟩+|00110⟩)}

+ |Υ4⟩bB1 ⊗ {g1h1(|11001⟩+|01100⟩)−g1h2(|11010⟩+|01111⟩)

− g2h1(|10000⟩|00101⟩)+g2h2(|10011⟩+|00110⟩)}].

|Γ2⟩cA2B2C1C2D = (f1|0⟩ + f2|1⟩)c

⊗ [g1h1(|11001⟩ + |01100⟩) + g1h2(|11010⟩ + |01111⟩)

− g2h1(|10000⟩ + |00101⟩) − g2h2(|10011⟩ + |00110⟩)].



(11.13)

Thirdly, Charlie makes a Bell-basis measurement on his own qubits (c, C1) given by

Using this basis the above reduced state |Γ2⟩cA2B2C1C2D can be written as (ignoring the
constant factor)

(11.14)

|Υ1⟩cC1
=

1

√2
(|00⟩ + |11⟩),

|Υ2⟩cC1
=

1

√2
(|00⟩ − |11⟩),

|Υ3⟩cC1
=

1

√2
(|01⟩ + |10⟩),

|Υ4⟩cC1
=

1

√2
(|01⟩ − |10⟩).

|Γ2⟩cA2B2C1C2D = |Υ1⟩cC1 ⊗ [g1h1f1|1101⟩ + g1h1f2|0100⟩ + g1h2f1|1110⟩

+ g1h2f2|0111⟩ − g2h1f1|1000⟩ − g2h1f2|0001⟩

− g2h2f1|1011⟩ − g2h2f2|0010⟩]

+ |Υ2⟩cC1 ⊗ [g1h1f1|1101⟩ − g1h1f2|0100⟩ + g1h2f1|1110⟩

− g1h2f2|0111⟩ − g2h1f1|1000⟩ + g2h1f2|0001⟩

− g2h2f1|1011⟩ + g2h2f2|0010⟩]

+ |Υ3⟩cC1 ⊗ [g1h1f2|1101⟩ + g1h1f1|0100⟩ + g1h2f2|1110⟩

+ g1h2f1|0111⟩ − g2h1f2|1000⟩ − g2h1f1|0001⟩

− g2h2f2|1011⟩ − g2h2f1|0010⟩]

+ |Υ4⟩cC1 ⊗ [−g1h1f2|1101⟩ + g1h1f1|0100⟩ − g1h2f2|1110⟩

+ g1h2f1|0111⟩ + g2h1f2|1000⟩ − g2h1f1|0001⟩

+ g2h2f2|1011⟩ − g2h2f1|0010⟩].



After the measurement of Charlie, he publicly announces his measurement outcomes
through a 2-bit classical message. Suppose that Charlie's measurement outcome is |Υ1⟩cC1 ,
then the state of the remaining qubits is reduced to the state

(11.15)

Until now, the controller, David, has been inactive in the protocol. After receiving all the
classical information from all the remaining parties, he scrutinizes the overall scenario.
Once he is satisfied that everything is in order, only then he performs his measurement on
his single-qubit D and announces the result classically via 1-bit messages. If David
observes that something went wrong, he remains inactive by doing nothing, in which case
the protocol cannot be completed.

Otherwise, David executes a single-qubit measurement on the basis given by

(11.16)

Using the basis (11.16), the above reduced state |Γ3⟩A2B2C2D can be written as (ignoring
the constant term)

(11.17)

|Γ3⟩A2B2C2D = g1h1f1|1101⟩ + g1h1f2|0100⟩ + g1h2f1|1110⟩

+ g1h2f2|0111⟩ − g2h1f1|1000⟩ − g2h1f2|0001⟩

− g2h2f1|1011⟩ − g2h2f2|0010⟩.

|ζ1⟩D = 1
√2

(|0⟩ + |1⟩)D,

|ζ2⟩D = 1
√2

(|0⟩ − |1⟩)D.

|Γ3⟩A2B2C2D = |ζ1⟩D ⊗ (g1h1f1|110⟩ + g1h1f2|010⟩ + g1h2f1|111⟩ + g1h2f2|011⟩

− g2h1f1|100⟩ − g2h1f2|000⟩ − g2h2f1|101⟩ − g2h2f2|001⟩)

+ |ζ2⟩D ⊗ (−g1h1f1|110⟩ + g1h1f2|010⟩ + g1h2f1|111⟩ − g1h2f2|011⟩

− g2h1f1|100⟩ + g2h1f2|000⟩ + g2h2f1|101⟩ − g2h2f2|001⟩).



After completing the measurement, David announces his outcome via 1-bit classical
message. Suppose David's measurement result is |ζ1⟩D, then the state of remaining qubits
is reduced to the state

(11.18)

Lastly, Alice, Bob and Charlie perform local unitary operations (ϑx)A2
, (ϑzϑx)B2

 and IC2

on their respective qubits to reconstruct the intended state. Thereby cyclic controlled
teleportation is successfully realized. The protocol is described schematically in Figure
11.3. There are 128 number of possible cases in the protocol. Here, we illustrate only one
such case.

|Γ4⟩A2B2C2
= (g1h1f1|110⟩ + g1h1f2|010⟩ + g1h2f1|111⟩ + g1h2f2|011⟩

− g2h1f1|100⟩ − g2h1f2|000⟩ − g2h2f1|101⟩ − g2h2f2|001⟩)

= (f1|1⟩ + f2|0⟩)A2
⊗ (g1|1⟩ − g2|0⟩)B2

⊗ (h1|0⟩ + h2|1⟩)C2
.



12 Multi-hop Teleportation Schemes
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12.1 INTRODUCTION
In this chapter, the multi-hop teleportation process is described in which there are
intermediate nodes between the sender and the receiver. Protocols with and without
controller are presented. These protocols with intermediate nodes are needed in cases of
long distance teleportation where the shared entangled resources become vulnerable to
environment disturbances.

So far in the previous chapters some direct communication protocols between the sender
and receiver with and without the help of the controller are discussed. Practical challenges
in implementing direct communication protocols across large distances are expected since
the quantum resource may be distorted due to the interaction with nature making it
unusable for teleportation. For that, intermediate nodes are introduced and the
teleportation protocols are executed across the nodes in series over relatively short
distances. The chances of being affected by noise are thus minimized. This is the concept
of hop-by-hop teleportation, which is actually a combination of a number of teleportation
processes performed sequentially. In this chapter, we discuss three different such
protocols. Multi-hop teleportation protocols have been treated in works like [20, 24, 25,
39, 48, 101, 121, 173, 186, 196, 200, 205, 206].

12.2 MULTI-HOP TELEPORTATION PROTOCOL OF ARBITRARY
SINGLE-QUBIT STATES

In this section, we discuss a protocol for transferring an arbitrary single-qubit state from a
sender Alice to a receiver Bob who are situated far apart and are not directly connected by
any kind of entangled resource. We considered the same problem of state transfer in

https://doi.org/10.1201/9781003561439-12


Chapter 8 where the two parties were directly sharing a quantum resource. Here the
problem of communication is approached by introducing intermediate nodes between the
sender and the receiver. The scheme presented in this section is developed by Wang et al.
[165].

One-hop quantum teleportation

This is the same as ordinary teleportation. Suppose that Alice wants to transmit an
arbitrary single-qubit quantum state |ℵ⟩a described in Eq. (8.1) to a distant receiver Bob.
Also, suppose that the two parties shares a two-qubit maximally entangled Bell state in the
form of Eq. (8.2). We recall briefly in the following the teleportation protocol described in
Section 8.2.

The composite state of the whole system is described in Eq. (8.3). Using the four Bell
states {|Υ1⟩, |Υ2⟩, |Υ3⟩, |Υ4⟩} given in Eq. (8.4), the above composite state can be
written as

(12.1)

where |υi⟩ 's are the reduced state and Ui's are the recovery operators, all of which are
given in Table 8.1.

Now Alice executes on her two qubits using the Bell bases and transmits the outcome
through a classical channel to Bob. Accordingly, Bob acts by performing the
corresponding unitary operation to recover the original quantum state.

Two-hop quantum teleportation

In this case, we assume that the sender Alice wants to send the quantum state given in Eq.
(8.1) to Bob, but initially there is no shared entangled quantum resource between them. In

|Γ⟩ =
1

2
[|Υ1⟩aA ⊗ (g1|0⟩ + g2|1⟩)B + |Υ2⟩aA ⊗ (g1|0⟩ − g2|1⟩)B

+ |Υ3⟩aA ⊗ (g1|1⟩ + g2|0⟩)B + |Υ4⟩aA ⊗ (g1|1⟩ − g2|0⟩)B]

=
4

∑
i=1

|Υi⟩aA ⊗ |υi⟩B

=
4

∑
i=1

|Υi⟩aA ⊗ (U −1
i |υ1⟩B)



this situation, quantum communication is feasible in the multi-hop way, where entangled
swapping is used to distribute the entangled qubits to the sender as well as receiver. For
two-hop cases, there is an intermediate node, say X1, which can share one Bell pair with
Alice and another with Bob. When the intermediate node X1 makes a measurement on the
two qubits and transmits the outcome to Alice and Bob, the remaining qubits at the sites
of Alice and Bob get entangled. In this way, a quantum channel is created between the
sender and receiver. We assume that the sender Alice and the receiver Bob share the
entangled state |Υ1⟩ = |00⟩+|11⟩

√2
 with the intermediate node X1 separately.

The receiver Bob is connected to Alice and X1 through a classical communication
channel.

The total state of the system can be written as

(12.2)

where Ui's are unitary operations given in Table 8.1 and |Υi⟩, are the Bell states described
in Section 8 in Eq. 8.4.

Now Alice and the intermediate node X1 execute measurements on their respective two
qubits using Bell bases and transmit the measurement result to Bob via classical channels.
Depending on the measurement results, Bob performs a unitary operation UiUj to recover
the intended state. That is the end of the two-hop teleportation protocol.

As an illustration, suppose that the measurement results of Alice and the party X1 are 
|Υ4⟩aA and |Υ2⟩X 1

1 X 2
1
, respectively. Then the reduced state becomes

U −1
2 U −1

4 |υ1⟩B = ϑzϑxϑz(g1|0⟩ + g2|1⟩)B = (−g1|1⟩ − g2|0⟩)B.

|ℵ⟩a ⊗ |Υ1⟩AX 1
1

⊗ |Υ1⟩X 2
1 B

= (g1|0⟩ + g2|1⟩)a ⊗
1

√2
(|00⟩ + |11⟩)AX 1

1
⊗ |Υ1⟩X 2

1 B

=
4

∑
i=1

|Υi⟩aA ⊗ (U −1
i |υ1⟩X 1

1
) ⊗ |Υ1⟩X 2

1 B

=
4

∑
i=1

|Υi⟩aA ⊗
4

∑
j=1

|Υj⟩X 1
1 X 2

1
⊗ (U −1

j U −1
i |υ1⟩B)



Finally, after receiving the classical information from Alice and the party X1, Bob
accordingly acts by performing a unitary operation which is U4U2 = ϑzϑxϑz on his qubit
to recover the original quantum state.

N -hop quantum teleportation

Now, the above two cases (one-hop and two-hop) can be generalized to N-hop quantum
teleportation where we assume in between Alice (source node) and Bob (destination
node), (N − 1) intermediate nodes are present. There is no direct quantum entanglement
between Alice and Bob, whereas each of consecutive pairs of parties are entangled
through a sharing of the Bell state |Υ1⟩ = |00⟩+|11⟩

√2
. We denote the intermediate nodes by 

X1, X2, X3, . . . , XN−1.

Further, Alice and all the intermediate nodes X1, X2, X3, . . . , XN−1 are connected to Bob
by classical communication channels.

Figure 12.1  Multi-hop teleportation protocol for transferring single-qubit state.

The composite state of the whole system can be written as



(12.3)

Now Alice and all intermediate nodes X1, X2, . . . , XN−1 make measurement on their
respective two qubits using Bell bases and transmit the measurement result to Bob
independently via the classical channels. Depending on the measurement results, Bob
performs a unitary operation UiUj ⋯ Uk to recover the original quantum state by which
the teleportation is successfully achieved. That is the end of the N-hop teleportation
protocol.

12.3 MULTI-HOP TELEPORTATION PROTOCOL OF ARBITRARY
TWO-QUBIT STATES

Let us assume that the sender Alice wants to transmit an unknown general two-qubit
quantum state to Bob, who is situated far away from Alice. This problem is already
discussed in Section 9.1, where the task of state transfer is accomplished through a
teleportation protocol in which the sender and the receiver share an entangled resource. In
our consideration it is a one-hop case which we briefly describe. The multi-hop protocol
for the above problem is developed by Zou et al. [206]

One-hop quantum teleportation

We refer to the protocol presented in Section 9.1. Here the two parties share the entangled
state

|G1⟩A1A2B1B2 =
1

2
(|0000⟩ + |0101⟩ + |1010⟩ + |1111⟩)

|ℵ⟩a ⊗ |Υ1⟩AX 1
1

⊗ |Υ1⟩X 2
1 X 1

2
⊗. . . ⊗|Υ1⟩X 2

N−1B

= (g1|0⟩ + g2|1⟩)a ⊗
1

√2
(|00⟩ + |11⟩)AX 1

1
⊗ |Υ1⟩X 2

1 X 1
2
⊗. . . ⊗|Υ1⟩X 2

N−1B

=
4

∑
i=1

|Υi⟩aA ⊗ (U −1
i |υ1⟩X 1

1
) ⊗ |Υ1⟩X 2

1 X 1
2
⊗. . . ⊗|Υ1⟩X 2

N−1B

=
4

∑
i=1

|Υi⟩aA ⊗
4

∑
j=1

|Υj⟩X 1
1 X 2

1
⊗ (U −1

j U −1
i |υ1⟩X 1

2
)⊗. . . ⊗|Υ1⟩X 2

N−1B

⋯ ⋯ ⋯

=
4

∑
i=1

|Υi⟩aA ⊗
4

∑
j=1

|Υj⟩X 1
1 X 2

1
⊗ ⋯ ⊗

4

∑
k=1

|Υk⟩X 1
N−1X 2

N−1
⊗ (U −1

k ⋯ U −1
j U −1

i |υ1⟩B).



For simplicity the total system (Eq. 9.7) can be written as

(12.4)

where |υj⟩ 's are the reduced state and Uj's are the recovery operators, all of which are
given in Table 9.1.

Now Alice executes measurement on her four qubits using the basis given in Eqs. (9.2)--
(9.5) and transmits her measurement results through a classical channel to Bob. Finally,
Bob applies the corresponding unitary operation to recover the original quantum state.

Two-hop quantum teleportation

In this situation there is no direct quantum entanglement between the source party and
destination party, rather an intermediate party, say X1, is introduced who shares
entanglement with the two parties. Let us assume an entangled state 
|G1⟩ = 1

2
(|0000⟩ + |0101⟩ + |1010⟩ + |1111⟩), as described in Eq. (9.2), is shared

between the intermediate node X1 and the sender Alice and also between X1 and the
receiver Bob. Also both Alice and X1 are connected to Bob by classical communication
channels.

Therefore, the total quantum system can be written as

|Γ⟩ =
1

4

16

∑
j=1

|Gj⟩a1a2A1A2 ⊗ |υj⟩B1B2

=
16

∑
j=1

|Gj⟩a1a2A1A2 ⊗ (U −1
j |υ1⟩B1B2),



(12.5)

where |Gj⟩ s are described in Eqs. (9.2)–(9.5) and Uj s are given in Table 9.1.
Now both parties, sender Alice and intermediate node X1, make measurements on their
respective qubits on the basis given in Eqs. (9.2)--(9.5) and send the measurement results
to Bob with the help of a 4 bit classical channel. After receiving the measurement result,
Bob performs a unitary operation to recover the original state. If Alice's measurement
result is |Gj⟩ and the measurement result of X1 is |Gk⟩, then the unitary operation to be
applied by Bob is UjUk. That is the end of the two-hop teleportation protocol.

Long Description for Figure 12.2

|ℵ⟩a1a2 ⊗ |G1⟩A1A2X 1
1 X 2

1
⊗ |G1⟩X 3

1 X 4
1 B1B2

= (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩)a1a2

⊗
1

2
(|0000⟩ + |0101⟩ + |1010⟩ + |1111⟩)A1A2X 1

1 X 2
1

⊗ |G1⟩X 3
1 X 4

1 B1B2

=
1

4

16

∑
j=1

|Gj⟩a1a2A1A2 ⊗ |υj⟩X 1
1 X 2

1
⊗ |G1⟩X 3

1 X 4
1 B1B2

=
16

∑
j=1

|Gj⟩a1a2A1A2 ⊗ (U −1
j |υ1⟩X 1

1 X 2
1
) ⊗ |G1⟩X 3

1 X 4
1 B1B2

=
16

∑
j=1

|Gj⟩a1a2A1A2 ⊗
16

∑
k=1

|Gk⟩X 1
1 X 2

1 X 3
1 X 4

1
⊗ (U −1

k U −1
j |υ1⟩B1B2)



Figure 12.2  Multi-hop teleportation protocol for 2-qubit state.

As an illustration, suppose Bob receives the measurement results |G7⟩a1a2A1A2  and 
|G3⟩X 1

1 X 2
1 X 3

1 X 4
1
 from Alice and the intermediate party X1, respectively. The reduced state of

the remaining qubits becomes

(−g1|01⟩ − g2|00⟩ − g3|11⟩ − g4|10⟩)B1B2
.

Then Bob applies a unitary operation U7U3 = (ϑzϑxϑz)B2  to obtain the intended state.

N -hop quantum teleportation

Now, the above two cases (one-hop and two-hop) can be generalized to N-hop quantum
teleportation where we assume in between Alice (source node) and Bob (destination
node), (N − 1) intermediate nodes are present. There is no direct quantum entanglement
between Alice and Bob, whereas each of consecutive pairs of nodes are entangled. We
assume that the intermediate nodes are X1, X2, X3, . . . , XN−1.

The sender Alice and all the intermediate nodes X1, X2, X3, . . . , XN−1 are individually
connected to Bob through classical communication channels.

The composite state of the whole system can be written as

(12.6)

|ℵ⟩a1a2 ⊗ |G1⟩A1A2X 1
1 X 2

1
⊗ |G1⟩X 3

1 X 4
1 X 1

2 X 2
2
⊗. . . ⊗|G1⟩X 3

N−1X 4
N−1B1B2

= (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩)a1a2 ⊗
1

2
(|0000⟩ + |0101⟩ + |1010⟩

+ |1111⟩)A1A2X 1
1 X 2

1
⊗ |G1⟩X 3

1 X 4
1 X 1

2 X 2
2
⊗. . . ⊗|G1⟩X 3

N−1X 4
N−1B1B2

=
16

∑
j=1

|Gj⟩a1a2A1A2 ⊗ (U −1
j |υ1⟩X 1

1 X 2
1
) ⊗ |G1⟩X 3

1 X 4
1 X 1

2 X 2
2
⊗. . . ⊗|G1⟩X 3

N−1X 4
N−1B1B2

=
16

∑
j=1

|Gj⟩a1a2A1A2 ⊗
16

∑
k=1

|Gk⟩X 1
1 X 2

1 X 3
1 X 4

1
⊗ (U −1

k U −1
j |υ1⟩X 1

2 X 2
2
)⊗. . . ⊗|G1⟩X 3

N−1X 4
N−1B1B2

⋯ ⋯ ⋯

=
16

∑
j=1

|Gj⟩a1a2A1A2 ⊗
16

∑
k=1

|Gk⟩X 1
1 X 2

1 X 3
1 X 4

1
⊗ ⋯ ⊗

16

∑
l=1

|Gl⟩X 1
N−1X 2

N−1X 3
N−1X 4

N−1

⊗ (U −1
l ⋯ U −1

k U −1
j |υ1⟩B1B2).



Now, all the intermediate parties X1, X2, . . . , XN−1 and the sender Alice perform
measurements on their respective four qubits using the basis given in Eq. (9.2)–(9.5) and
transmit the measurement results to Bob independently through classical channels. After
receiving the results of the measurement, Bob finally executes a unitary operation 
UjUk ⋯ Ul to recover the intended quantum state and that is the end of the N-hop
teleportation protocol.

12.4 MULTI-HOP CONTROLLED TELEPORTATION PROTOCOL OF
ARBITRARY SINGLE-QUBIT STATE

In this section the problem is that of transfer of a single qubit state to a distant party under
the supervision of a controller. It is performed by introducing intermediate nodes in order
to avoid the effect of long distances on entangled connections. The protocol is designed by
Peng et al. [121].

One-hop Quantum Controlled Teleportation

There are two nodes; Alice is the source node whereas Bob is the destination node, and
Candy is the controller. The sender (Alice) intends to transmit a single-qubit state to the
receiver (Bob) which is given by

|ℵ⟩a = (g1|0⟩ + g2|1⟩).

(12.7)

Here, the parameters g1 and g2 meet the normalization condition, that is,

|g1|2 + |g2|2 = 1.

There is a 3-qubit quantum resource connecting Alice, Bob and Candy given by

|E⟩ABC =
1

√2
(|000⟩ + cosκ|110⟩ + sinκ|111⟩),

(12.8)

where qubits A,B,C are held by Alice, Bob and Candy, respectively. The corresponding
circuit diagram for its generation is given in Figure 12.3, where Ry(κ) is described by the
matrix



Figure 12.3  Circuit diagram for the generation of quantum resource given in Eq. (12.8). ⏎

The composite system is given by

(12.9)

To complete the process, Alice first performs measurements on her qubits a and A on the
Bell basis (vide Eq. (8.4)). After the measurement, she sends the measurement outcomes
to Bob and Candy through classical channels. After receiving the classical information,
Candy makes a single-qubit rotation on his qubit C and then executes a projective
measurement on the same qubit C and transmits the results to the receiver Bob.
Depending on the classical information from Alice and Candy, an appropriate unitary
operation is implemented to recover the intended quantum state. These operations are
summarized in Table 12.1. That is the end of the protocol.

Table 12.1

Possible local unitary operation performed
by Bob in one-hop controlled teleportation
according to the measurement outcomes of
Alice and Candy ⏎

Alice's

results

Candy's

results

State at Bob's

site

Bob's unitary

operation

|Υ1⟩aA |0⟩C (g1|0⟩ + g2|1⟩)B (I)B

Ry(κ) = ( ).
cos κ

2 −sin κ
2

sin κ
2 cos κ

2

|Γ⟩ = |ℵ⟩a ⊗ |E⟩ABC

= (g1|0⟩ + g2|1⟩)a ⊗
1

√2
(|000⟩ + cosκ|110⟩ + sinκ|111⟩)ABC.



Alice's

results

Candy's

results

State at Bob's

site

Bob's unitary

operation

|Υ1⟩aA |1⟩C (g1|0⟩ − g2|1⟩)B (ϑz)B

|Υ2⟩aA |0⟩C (g1|0⟩ − g2|1⟩)B (ϑz)B

|Υ2⟩aA |1⟩C (g1|0⟩ + g2|1⟩)B (I)B

|Υ3⟩aA |0⟩C (g1|1⟩ + g2|0⟩)B (ϑx)B

|Υ3⟩aA |1⟩C (g1|1⟩ − g2|0⟩)B (ϑzϑx)B

|Υ4⟩aA |0⟩C (g1|1⟩ − g2|0⟩)B (ϑzϑx)B

|Υ4⟩aA |1⟩C (g1|1⟩ + g2|0⟩)B (ϑx)B

We illustrate the whole process in the following way.

The entire quantum system (12.9) can be written using the Bell basis 
{|Υ1⟩, |Υ2⟩, |Υ3⟩, |Υ4⟩} as

(12.10)

After measuring qubits (a, A), Alice gets the outcomes |Υ1⟩aA or |Υ2⟩aA with probability

|g1|2 + |g2|2cos2κ + |g2|2sin2κ

2[(|g1|2 + |g2|2cos2κ + |g2|2sin2κ) + (|g1|2cos2κ + |g2|2 + |g1|2sin2κ)]
=

1

4

(12.11)

and |Υ3⟩aA or |Υ4⟩aA with probability

|g1|2cos2κ + |g2|2 + |g1|2sin2κ

2[(|g1|2 + |g2|2cos2κ + |g2|2sin2κ) + (|g1|2cos2κ + |g2|2 + |g1|2sin2κ)]
=

1

4
.

(12.12)

Suppose that the measurement outcome of Alice's measurement is |Υ2⟩aA, then the state
of the remaining qubits becomes

|Γ⟩ =
1

2
[|Υ1⟩aA ⊗ (g1|00⟩ + g2cosκ|10⟩ + g2sinκ|11⟩)BC

+ |Υ2⟩aA ⊗ (g1|00⟩ − g2cosκ|10⟩ − g2sinκ|11⟩)BC

+ |Υ3⟩aA ⊗ (g1cosκ|10⟩ + g1sinκ|11⟩ + g2|00⟩)BC

+ |Υ4⟩aA ⊗ (g1cosκ|10⟩ + g1sinκ|11⟩ − g2|00⟩)BC].



(g1|00⟩ − g2cosκ|10⟩ − g2sinκ|11⟩)BC.

(12.13)

Upon accepting Alice's classical message, the controller, Candy, applies the rotation
operator Ry(−κ) on his particle C.

Now,

and hence,

(12.14)

(12.15)

Using the Eqs. (12.14)-(12.15), the state (12.13) can be expressed as

Ry(−κ) = ( ),
cos κ

2 sin κ
2

−sin κ
2 cos κ

2

Ry(−κ)|0⟩ = ( )( )

= ( )

= cos
κ

2
( ) − sin

κ

2
( )

= cos
κ

2
|0⟩ − sin

κ

2
|1⟩,

cos κ
2

sin κ
2

−sin κ
2

cos κ
2

1

0

cos κ
2

−sin κ
2

1

0

0

1

Ry(−κ)|1⟩ = ( )( )

= ( )

= sin
κ

2
( ) + cos

κ

2
( )

= sin
κ

2
|0⟩ + cos

κ

2
|1⟩,

cos κ
2 sin κ

2

−sin κ
2 cos κ

2

0

1

sin κ
2

cos κ
2

1

0

0

1



(12.16)

Candy then performs measurement on his particle C on the computational basis {|0⟩, |1⟩}

and communicates the outcome to Bob through a classical channel.

If the outcome is |0⟩C , which occurs with probability cos2(κ/2), the state of particle
becomes (g1|0⟩ − g2|1⟩)B. The joint probability for this outcome (including Alice's
result) is 1

4 cos2(κ/2). Based on the measurement results from Alice and Candy, Bob
applies a unitary operation ϑz to his particle to recover the intended state |ℵ⟩.

If the result is |1⟩C , which occurs with probability sin2(κ/2), the state of the particle
becomes (g1|0⟩ + g2|1⟩)B. The joint probability for this result (including Alice's result) is
1
4 sin2(κ/2). Based on the measurement results from Alice and Candy, Bob applies
identity operation (I) to his particle to recover the intended state |ℵ⟩.

Since Bob can always recover the target state using a suitable unitary operation in all
possible scenarios, this controlled teleportation scheme is perfect. The total success
probability is

4 ×
1

4
× [cos2(

κ

2
) + sin2(

κ

2
)] = 1.

The one-hop teleportation is thereby achieved in the case where the measurement of Alice
yields |Υ2⟩aA. The other three cases are similar to the above.

Two-hop controlled teleportation

In this scenario, Alice serves as the source (sender) node, Bob as the destination node,
with X1 functioning as the intermediate node. Candy and David act as controllers at the
intermediate and destination nodes, respectively. Alice intends to transmit the quantum
state |ℵ⟩a as defined in Eq. (12.7) to Bob. However, there is no direct quantum channel
between the source (Alice) and the destination (Bob). Instead, two quantum resources are

Ry(−κ)(g1|00⟩ − g2cosκ|10⟩ − g2sinκ|11⟩)
BC

= Ry(−κ)(g1|00⟩ − g2(2cos2 κ

2
− 1)|10⟩ − 2g2sin

κ

2
cos

κ

2
|11⟩)

BC

= (g1cos
κ

2
|00⟩ − g1sin

κ

2
|01⟩ − g2cos

κ

2
|10⟩ − g2sin

κ

2
|11⟩)

BC

= cos
κ

2
(g1|0⟩ − g2|1⟩)B|0⟩C − sin

κ

2
(g1|0⟩ + g2|1⟩)B|1⟩C.



available: one shared between Alice and the intermediate node X1 and another between X1

and Bob, which are as in the following.

|E⟩AX 1
1 C =

1

√2
(|000⟩ + cosκ|110⟩ + sinκ|111⟩),

|E⟩X 2
1 BD =

1

√2
(|000⟩ + cosκ|110⟩ + sinκ|111⟩).

Based on the outcome of the one-hop controlled teleportation, the qubit X 1
1  at the

intermediate node X1 can be reduced to one of the four possible states: (g1|0⟩ ± g2|1⟩)X 1
1

or (g1|1⟩ ± g2|0⟩)X 1
1
. Suppose the state (g1|1⟩ − g2|0⟩)X 1

1
 is obtained at node X1 after the

first controlled teleportation, then the resulting system state can be expressed as

|Γ1⟩ = (g1|1⟩ − g2|0⟩)X 1
1

⊗
1

√2
(|000⟩ + cosκ|110⟩ + sinκ|111⟩)X 2

1 BD.

(12.17)

Using the Bell basis, the above system state can be rewritten as

(12.18)

Following a similar approach as in the one-hop controlled teleportation, one of the four
possible states- (g1|0⟩ ± g2|1⟩)B or (g1|1⟩ ± g2|0⟩)B -is obtained at the destination node
Bob, with the assistance of the controller David.

Bob can always recover the target state |ℵ⟩ by applying a suitable unitary operation on the
particle B. The other three possible cases of the state relating to the qubit X 1

1  is similarly
treated. In this way Bob obtains the intended state with certainty.

Multi-hop controlled teleportation

|Γ1⟩ = (g1|1⟩ − g2|0⟩)X 1
1

⊗
1

√2
(|000⟩ + cosκ|110⟩ + sinκ|111⟩)X 2

1 BD

=
1

2
[|Υ1⟩X 1

1 X 2
1

⊗ (g1cosκ|10⟩ + g1sinκ|11⟩ − g2|00⟩)BD

− |Υ2⟩X 1
1 X 2

1
⊗ (g1cosκ|10⟩ + g1sinκ|11⟩ + g2|00⟩)BD

+ |Υ3⟩X 1
1 X 2

1
⊗ (g1|00⟩ − g2cosκ|10⟩ − g2sinκ|11⟩)BD

− |Υ4⟩X 1
1 X 2

1
⊗ (g1|00⟩ + g2cosκ|10⟩ + g2sinκ|11⟩)BD].



By extending the idea of 2-hop controlled teleportation, it is possible to induct (N − 1)

intermediate nodes X1, X2, . . . , XN−1 between Alice and Bob and also controllers
corresponding to each node where a quantum resource described in Eq. (12.8) is shared by
the consecutive nodes including Alice and the controller. The steps in the 2-hop case can
be repeated at each of the intermediate nodes with the classical information obtained from
Alice and the intermediate nodes, the protocol can be completed by Bob through an
application of appropriate unitary operation.



13 Probabilistic Teleportation
Protocols

DOI: 10.1201/9781003561439-13

13.1 INTRODUCTION
The protocols presented in this chapter are probabilistic teleportation protocols in
which there are cases of failures with certain probabilities. Probabilistic teleportation
schemes of various kinds have been discussed in works like [1, 41, 45, 76, 82, 85, 98,
118, 135, 168, 169, 180]. Generally the quantum resources used in these protocols are
not maximally entangled. This is one explanation for the probabilistic nature of these
protocols. The justification of studying these protocols is that the generation and
preservation of resources for these protocols are less difficult compared to that of those
where maximally entangled states are used. Also, there is a class of resumable
protocols in which the probabilistic teleportation process can be repeated in the case
where the attempt fails in the first place [21, 52, 104, 105].

13.2 PROBABILISTIC TELEPORTATION PROTOCOL OF
ARBITRARY SINGLE-QUBIT STATE

Assume that Alice possesses an unknown single-qubit quantum state given by

|ℵ⟩a = (g1|0⟩ + g2|1⟩)

(13.1)

with normalization condition |g1|2 + |g2|2 = 1 that she wants to transmit to the distant
receiver Bob.

https://doi.org/10.1201/9781003561439-13


There is a classical communication channel between Alice and Bob.

A pure entangled quantum state is shared between the parties which acts as a quantum
channel given by

|E⟩AB =
1

√1 + |m|2
(|00⟩ + m|11⟩),

(13.2)

where m is a known complex number. The qubits ‘A’ and ‘B’ are with Alice and Bob,
respectively.

The circuit diagram for generation of (13.2) is shown in Figure 13.1, where U is
given by

Figure 13.1  Circuit diagram for the generation of non-maximally entangled state given in Eq. (13.2). ⏎

The aforesaid task of state transfer using the above resource is done probabilistically
with certain success probability by the following teleportation process designed by
Agrawal et al. [1].

The total system can be written as

|Γ⟩ = |ℵ⟩a ⊗ |E⟩AB.

(13.3)

Alice first makes a measurement on her qubits (a, A). If Alice performs measurement
in the Bell basis given in Eq. (8.4), then the teleportation process cannot be completed

U = .
⎛⎜⎝ 1

√1+|m|2
− m

√1+|m|2

m

√1+|m|2

1
√1+|m|2

⎞⎟⎠



with unit fidelity and unit probability. However, if the measurement is performed in a
non-maximally entangled Bell basis then it is possible for Alice to transfer the state 
|ℵ⟩a with unit fidelity, though not with unit probability.

For this Alice uses a set of non-maximally entangled orthogonal Bell-states as basis
states which are given by

(13.4)

where p and q are complex numbers. When p = q = 0, the above basis reduces to the
computational basis which is not entangled, and when p = q = 1, it reduces to the
maximally entangled Bell basis.

We have the following relations.

(13.5)

Using the above relations the total system can be rewritten in the following form:

|1⟩aA = 1
√1+|p|2

(|00⟩ + p|11⟩),

|2⟩aA = 1
√1+|p|2

(p∗|00⟩ − |11⟩),

|3⟩aA = 1
√1+|q|2

(|01⟩ + q|10⟩),

|4⟩aA = 1
√1+|q|2

(q∗|01⟩ − |10⟩),

|00⟩ = 1
√1+|p|2

(|1⟩ + p|2⟩),

|11⟩ = 1
√1+|p|2

(p∗|1⟩ − |2⟩),

|01⟩ = 1
√1+|q|2

(|3⟩ + q|4⟩),

|10⟩ = 1
√1+|q|2

(q∗|3⟩ − |4⟩).



(13.6)

Here, M = 1
√1+|m|2

, P = 1
√1+|p|2

 and Q = 1
√1+|q|2

 are real numbers. After that Alice

performs a measurement on the basis given in Eq. (13.4) and communicates this result
to Bob by a classical channel.

In general, this classical information will be of no use for Bob in obtaining the state
intended for teleportation with the exception of the following cases.

Case I: If p = 1
p∗ = q∗ = 1

q
= m, that is, the parameters m, p, q are complex numbers

with unit modulus and are related as above, then it is possible for Bob to apply
appropriate unitary operations on his qubit to produce the state |ℵ⟩a at his end.

Following the above relations we have |p|2 = pp∗ = 1, |q|2 = qq∗ = 1 which implies
that P = Q = 1

√2
. Putting in (13.6) and rewriting we have

(13.7)

Now Alice executes her measurement with the basis given in Eq. (13.4) and sends the
results to Bob through a classical channel. Depending on the outcomes of Alice, Bob
applies the corresponding appropriate unitary operation to obtain the intended state.
Details of unitary operations and reduced states obtained by Bob are given in Table
13.1.

|Γ⟩ = |ℵ⟩a ⊗ |E⟩AB

= M(g1|0⟩ + g2|1⟩)a ⊗ (|00⟩ + m|11⟩)AB

= M(g1|00⟩aA|0⟩B + g1m|01⟩aA|1⟩B + g2|10⟩aA|0⟩B + g2m|11⟩aA|1⟩B)

= M[|1⟩aA(Pg1|0⟩ + Pmg2p
∗|1⟩)B + |2⟩aA(Ppg1|0⟩ − Pmg2|1⟩)B

+ |3⟩aA(Qg2q
∗|0⟩ + Qg1m|1⟩)B + |4⟩aA(−Qg2|0⟩ + Qg1mq|1⟩)B].

|Γ⟩ =
M

√2
[|1⟩aA(g1|0⟩ + g2|1⟩)B + m|2⟩aA(g1|0⟩ − g2|1⟩)B

+ m|3⟩aA(g2|0⟩ + g1|1⟩)B + |4⟩aA(−g2|0⟩ + g1|1⟩)B].



Table 13.1

State at Bob's location and corresponding unitary
operations for Bob conditioned on Alice's results ⏎

Alice's outcome State of Bob's site unitary operation

|1⟩aA (g1|0⟩ + g2|1⟩)B (I)B

|2⟩aA (g1|0⟩ − g2|1⟩)B (ϑz)B

|3⟩aA (g2|0⟩ + g1|1⟩)B (ϑx)B

|4⟩aA (−g2|0⟩ + g1|1⟩)B (ϑzϑx)B

Case II: If we consider p = m = q∗, or p = m = 1
q

, or p∗ = 1
m

= q, or p∗ = 1
m

= 1
q∗

, then the teleportation of the state |ℵ⟩a is possible only in two cases of measurement
outcomes, that is,

(i) if the condition p = m = q∗ holds, then teleportation is possible only when
Alice obtains the measurement result |2⟩aA and |3⟩aA. This is immediate from the
expression (13.6). The other three case also described below follow similarly.

(ii) if the condition p = m = 1
q

 holds, then teleportation is possible only when
Alice obtains the measurement result |2⟩aA and |4⟩aA.

(iii) if the condition p∗ = 1
m

= q holds, then teleportation is possible only when
Alice obtains the measurement result |1⟩aA and |4⟩aA.

(iv) if the condition p∗ = 1
m

= 1
q∗  holds, then teleportation is possible only when

Alice obtains the measurement result |1⟩aA and |3⟩aA.

The process fails in the other two cases of measurement outcomes in each condition. It
also follows from Eq. (13.6) that the total probability of success corresponding to each
condition is

P =
2|m|2

(1 + |m|2)2
.

It follows from the above that in order to perform probabilistic teleportation the
knowledge of the entanglement resource is necessary on the part of the sender Alice in



the choice of her basis of measurement while the receiver Bob need not have to possess
such information.

13.3 PROBABILISTIC TELEPORTATION PROTOCOL OF AN
UNKNOWN TWO-QUBIT STATE

In this section, it is shown that an unknown two-qubit quantum state can be transferred
from one party to another party with certain probability by the use of two Bell state
measurements, a POVM measurement and an appropriate unitary operation. A 4-qubit
entanglement resource is utilized in the protocol which is not maximally entangled. The
protocol has been designed by Yan et al. [41].

Suppose that two parties, namely Alice and Bob, are situated at distant places. Alice
plays the role of a sender and Bob is the receiver. Alice wants to transport her two qubit
quantum state given by

|ℵ⟩a1a2
= (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩),

(13.8)

to the receiver Bob where the coefficients g1, g2, g3, g4 satisfy normalization condition,
that is,

|g1|2 + |g2|2 + |g3|2 + |g4|2 = 1.

For this purpose a four qubit entangled state, shared between the parties and generally
not maximally entangled, is used as quantum resource which is given as

|E⟩A1A2B1B2
= (x|0000⟩ + y|1001⟩ + z|0110⟩ + w|1111⟩),

(13.9)

where the coefficients are non-zero real numbers and meet the normalization condition,
that is, x2 + y2 + z2 + w2 = 1. The qubits A1 and A2, and qubit pair (a1, a2) are in
Alice's possession, and other two qubits B1 and B2 are in Bob's possession. The circuit
for the generation of (13.9) is given in Figure 13.2 where the operator U is described as



Figure 13.2  Circuit diagram for the generation of the non-maximally entangled resource given in Eq. (13.9). ⏎

Also the two parties are connected amongst themselves by a classical communication
channel.

The composite system of six qubits is given by

|Γ⟩ = |ℵ⟩a1a2
⊗ |E⟩A1A2B1B2

.

(13.10)

The above state can be written as

(13.11)

where

U = .

⎛⎜⎝x 0 0 0

0 z 0 0

0 0 y 0

0 0 0 w

⎞⎟⎠|Γ⟩ =
4

∑
i=1

|Υi⟩aa1A2 ⊗ |Υ1⟩a2A1 ⊗ |R1i⟩B1B2 +
4

∑
i=1

|Υi⟩a1A2 ⊗ |Υ2⟩a2A1 ⊗ |R2i⟩B1B2

+
4

∑
i=1

|Υi⟩a1A2 ⊗ |Υ3⟩a2A1 ⊗ |R3i⟩B1B2 +
4

∑
i=1

|Υi⟩a1A2 ⊗ |Υ4⟩a2A1 ⊗ |R4i⟩B1B2

1



(13.12)

(13.13)

(13.14)

|R11⟩B1B2 =
1

2
(xg1|00⟩ + yg2|01⟩ + zg3|10⟩ + wg4|11⟩),

|R12⟩B1B2 =
1

2
(xg1|00⟩ + yg2|01⟩ − zg3|10⟩ − wg4|11⟩),

|R13⟩B1B2 =
1

2
(zg1|10⟩ + wg2|11⟩ + xg3|00⟩ + yg4|01⟩),

|R14⟩B1B2 =
1

2
(zg1|10⟩ + wg2|11⟩ − xg3|00⟩ − yg4|01⟩),

|R21⟩B1B2 =
1

2
(xg1|00⟩ − yg2|01⟩ + zg3|10⟩ − wg4|11⟩),

|R22⟩B1B2 =
1

2
(xg1|00⟩ − yg2|01⟩ − zg3|10⟩ + wg4|11⟩),

|R23⟩B1B2 =
1

2
(zg1|10⟩ − wg2|11⟩ + xg3|00⟩ − yg4|01⟩),

|R24⟩B1B2 =
1

2
(zg1|10⟩ − wg2|11⟩ − xg3|00⟩ + yg4|01⟩),

|R31⟩B1B2 =
1

2
(yg1|01⟩ + xg2|00⟩ + wg3|11⟩ + zg4|10⟩),

|R32⟩B1B2 =
1

2
(yg1|01⟩ + xg2|00⟩ − wg3|11⟩ − zg4|10⟩),

|R33⟩B1B2 =
1

2
(wg1|11⟩ + zg2|10⟩ + yg3|01⟩ + xg4|00⟩),

|R34⟩B1B2 =
1

2
(wg1|11⟩ + zg2|10⟩ − yg3|01⟩ − xg4|00⟩),

|R41⟩B1B2 =
1

2
(yg1|01⟩ − xg2|00⟩ + wg3|11⟩ − zg4|10⟩),

|R42⟩B1B2 =
1

2
(yg1|01⟩ − xg2|00⟩ − wg3|11⟩ + zg4|10⟩),

|R43⟩B1B2 =
1

2
(wg1|11⟩ − zg2|10⟩ + yg3|01⟩ − xg4|00⟩),

|R44⟩B1B2 =
1

2
(wg1|11⟩ − zg2|10⟩ − yg3|01⟩ + xg4|00⟩).



(13.15)

To complete the teleportation processes, Alice first executes two Bell basis
measurements on her qubit pairs (a2, A1) and (a1, A2) given by

(13.16)

Suppose the outcomes of the Alice's measurement are |Υ1⟩a1A2
 and |Υ1⟩a2A1

, then
Bob's qubits B1, B2 are in the state

|R11⟩
′

B1B2
=

(xg1|00⟩ + yg2|01⟩ + zg3|10⟩ + wg4|11⟩)

√|xg1|2 + |yg2|2 + |zg3|2 + |wg4|2
.

(13.17)

After the measurements, Alice sends her outcomes to Bob with the help of a 4-bit
classical channel. After receiving the classical messages from Alice, Bob introduces
two auxiliary qubits q1, q2 with the initial state |0⟩q1 |0⟩q2 . Then the state of Bob's qubits
becomes

|R11⟩
′

B1B2
|00⟩q1q2 =

(xg1|0000⟩ + yg2|0100⟩ + zg3|1000⟩ + wg4|1100⟩)B1B2q1q2

√|xg1|2 + |yg2|2 + |zg3|2 + |wg4|2
.

(13.18)

Now Bob executes two CNOT operations on his qubits with B1, B2 as control qubits
and q1, q2 as the corresponding target qubits. After completion of this operation, the
above state of the qubits becomes the following.

1

|Υ1⟩(a2,A1)/(a1,A2) =
(|00⟩ + |11⟩)

√2
,

|Υ2⟩(a2,A1)/(a1,A2) =
(|00⟩ − |11⟩)

√2
,

|Υ3⟩(a2,A1)/(a1,A2) =
(|01⟩ + |10⟩)

√2
,

|Υ4⟩(a2,A1)/(a1,A2) =
(|01⟩ − |10⟩)

√2
.



|R11⟩
′′

B1B2q1q2
=

1

N
(xg1|0000⟩ + yg2|0101⟩ + zg3|1010⟩ + wg4|1111⟩)B1B2q1q2 ,

(13.19)

where N = √|xg1|2 + |yg2|2 + |zg3|2 + |wg4|2.

We can rewrite the above state as

(13.20)

Now Bob executes on his auxiliary qubits q1, q2 with a POVM given by

(13.21)

where

|R11⟩
′′

B1B2q1q2
=

1

4N
[ (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩)B1B2

⊗ (x|00⟩ + y|01⟩ + z|10⟩ + w|11⟩)q1q2

+ (g1|00⟩ + g2|01⟩ − g3|10⟩ − g4|11⟩)B1B2

⊗ (x|00⟩ + y|01⟩ − z|10⟩ − w|11⟩)q1q2

+ (g1|00⟩ − g2|01⟩ + g3|10⟩ − g4|11⟩)B1B2

⊗ (x|00⟩ − y|01⟩ + z|10⟩ − w|11⟩)q1q2

+ (g1|00⟩ − g2|01⟩ − g3|10⟩ + g4|11⟩)B1B2

⊗ (x|00⟩ − y|01⟩ − z|10⟩ + w|11⟩)q1q2].

Fi =
1

n
|χi⟩⟨χi|; i = 1, 2, 3, 4

F5 = I − (F1 + F2 + F3 + F4),

1 1 1 1



(13.22)

and I is an identity operator, n is a coefficient related with the coefficients x,y,z,w such
that 1 ≤ n ≤ 4, and makes F5 into a positive operator. For simplicity of the calculation,
we can write the above five operators F1, F2, F3, F4, F5 in the matrix form respectively
as

where

|χ1⟩ = M(
1

x
|00⟩ +

1

y
|01⟩ +

1

z
|10⟩ +

1

w
|11⟩),

|χ2⟩ = M(
1

x
|00⟩ +

1

y
|01⟩ −

1

z
|10⟩ −

1

w
|11⟩),

|χ3⟩ = M(
1

x
|00⟩ −

1

y
|01⟩ +

1

z
|10⟩ −

1

w
|11⟩),

|χ4⟩ = M(
1

x
|00⟩ −

1

y
|01⟩ −

1

z
|10⟩ +

1

w
|11⟩),

M =
1

√ 1
x2 + 1

y2 + 1
z2 + 1

w2

;

F1 =
M 2

n
, F2 =

M 2

n
,

⎛⎜⎝ 1
x2

1
xy

1
xz

1
xw

1
xy

1
y2

1
yz

1
yw

1
xz

1
yz

1
z2

1
zw

1
xw

1
yw

1
zw

1
w2

⎞⎟⎠ ⎛⎜⎝ 1
x2

1
xy

− 1
xz

− 1
xw

1
xy

1
y2 − 1

yz
− 1

yw

− 1
xz

− 1
yz

1
z2

1
zw

− 1
xw

− 1
yw

1
zw

1
w2

⎞⎟⎠F3 =
M 2

n
, F4 =

M 2

n
,

⎛⎜⎝ 1
x2 − 1

xy
1

xz
− 1

xw

− 1
xy

1
y2 − 1

yz
1

yw

1
xz

− 1
yz

1
z2 − 1

zw

− 1
xw

1
yw

− 1
zw

1
w2

⎞⎟⎠ ⎛⎜⎝ 1
x2 − 1

xy
− 1

xz
1

xw

− 1
xy

1
y2

1
yz

− 1
yw

− 1
xz

1
yz

1
z2 − 1

zw

1
xw

− 1
yw

− 1
zw

1
w2

⎞⎟⎠F5 = M 2 ,

⎛⎜⎝D1 0 0 0

0 D2 0 0

0 0 D3 0

0 0 0 D4

⎞⎟⎠



(13.23)

If Bob's POVM outcome is F1, then he obtains the original state which Alice wanted to
transfer, that is,

|ℵ⟩B1B2 = (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩).

If Bob's POVM outcome is F2, then he gets the original state |ℵ⟩B1B2  by performing the
appropriate unitary operation σz ⊗ I on the qubits B1, B2.

If Bob's POVM outcome is F3, then he recovers the original state |ℵ⟩B1B2  by
performing the appropriate unitary operation I ⊗ σz on the qubits B1, B2.

If Bob's POVM outcome is F4, then he obtains the original state |ℵ⟩B1B2  by performing
the appropriate unitary operation σz ⊗ σz on the qubits B1, B2.

In all the above four cases mentioned above, we see that the teleportation processes is
successfully realized. However, if Bob's measurement result is F5, he gets no
information about the state of the qubits B1, B2. In this case, the teleportation process
fails.

The other cases arising out of Alice's measurement are similarly treated.

In all cases we see that there are possibilities of failure of the protocol. Thus the state
can be transferred only with partial success.

13.4 PROBABILISTIC RESUMABLE TELEPORTATION SCHEME

D1 = (1 −
4

n
) 1

x2
+

1

y2
+

1

z2
+

1

w2
,

D2 = (1 −
4

n
) 1

y2
+

1

x2
+

1

z2
+

1

w2
,

D3 = (1 −
4

n
) 1

z2
+

1

x2
+

1

y2
+

1

w2
,

D4 = (1 −
4

n
) 1

w2
+

1

x2
+

1

y2
+

1

z2
.



In this section we discuss a probabilistic teleportation protocol in which, unlike in the
usual teleportations, the state to be transferred is not destroyed. Rather, the state can be
recovered by the sender in the case where the teleportation fails. The process can then
be repeated till the success is achieved. The protocol has been designed by Meng et al.
[105].

In this scheme there are two mutually separated parties, namely Alice and Bob, playing
the role of sender and receiver, respectively. The sender Alice has two qubits in an
arbitrary two-qubit state given by

|ℵ⟩a1a2
= (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩),

(13.24)

where the coefficients g1, g2, g3, g4 satisfy normalization condition, that is,

4

∑
i=1

|gi|
2 = 1.

Alice wishes to transmit this two-qubit state to Bob through a pre-shared quantum
channel between the parties.

There is also a classical communication channel between Alice and Bob.

For this purpose, two 2-qubit entangled states are shared between Alice and Bob which
are given by

|E1⟩A1B1
= (τ1|00⟩ + τ2|11⟩),

(13.25)

|E2⟩A2B2
=

1

√2
(|01⟩ + |10⟩)

(13.26)

where |τ1| ≥ |τ2|, |τ1|2 + |τ2|2 = 1. Qubits A1, A2 belong to Alice, and qubits B1, B2

belong to Bob. The combined system becomes



(13.27)

To achieve the goal of state transfer, Alice initially makes two CNOT operations on the
qubit pairs (a1, A1) and (a2, A2), where qubits A1 and A2 are the control qubits, and
qubits a1 and a2 are the target qubits. Then the state of the whole quantum system
evolves into the state

(13.28)

Now, Alice introduces two auxiliary qubits q1 and q2 with initial state |00⟩q1q2  and
executes two CNOT operation on her qubit pairs (a1, q1) and (a2, q2), where qubits a1

and a2 are control qubits and the qubits q1 and q2 are the respective target qubits. After
performing these operation, the quantum state of the system evolves into the state

|Γ⟩ = |ℵ⟩a1a2 ⊗ |E1⟩A1B1 ⊗ |E2⟩A2B2

=
1

√2
(g1τ1|000001⟩ + g1τ1|000010⟩ + g1τ2|001101⟩

+ g1τ2|001110⟩ + g2τ1|010001⟩ + g2τ1|010010⟩

+ g2τ2|011101⟩ + g2τ2|011110⟩ + g3τ1|100001⟩

+ g3τ1|100010⟩ + g3τ2|101101⟩ + g3τ2|101110⟩

+ g4τ1|110001⟩ + g4τ1|110010⟩ + g4τ2|111101⟩

+ g4τ2|111110⟩)
a1a2A1B1A2B2

.

|Γ1⟩ =
1

√2
(g1τ1|0000⟩a1a2A1A2 |01⟩B1B2 + g1τ1|0101⟩a1a2A1A2 |00⟩B1B2

+ g1τ2|1010⟩a1a2A1A2 |11⟩B1B2 + g1τ2|1111⟩a1a2A1A2 |10⟩B1B2

+ g2τ1|0100⟩a1a2A1A2 |01⟩B1B2 + g2τ1|0001⟩a1a2A1A2 |00⟩B1B2

+ g2τ2|1110⟩a1a2A1A2 |11⟩B1B2 + g2τ2|1011⟩a1a2A1A2 |10⟩B1B2

+ g3τ1|1000⟩a1a2A1A2 |01⟩B1B2 + g3τ1|1101⟩a1a2A1A2 |00⟩B1B2

+ g3τ2|0010⟩a1a2A1A2 |11⟩B1B2 + g3τ2|0111⟩a1a2A1A2 |10⟩B1B2

+ g4τ1|1100⟩a1a2A1A2 |01⟩B1B2 + g4τ1|1001⟩a1a2A1A2 |00⟩B1B2

+ g4τ2|0110⟩a1a2A1A2 |11⟩B1B2 + g4τ2|0011⟩a1a2A1A2 |10⟩B1B2).



(13.29)

Next, to accomplish resumable quantum teleportation of the two-qubit entangled state,
Alice makes the following controlled unitary transform under the basis 
{|00⟩, |01⟩, |10⟩, |11⟩} on qubits a1, a2, A1, A2, q1 and q2

(13.30)

|Γ2⟩ =
1

√2
(g1τ1|00⟩q1q2

|0000⟩a1a2A1A2
|01⟩B1B2

+ g1τ1|01⟩q1q2

|0101⟩a1a2A1A2 |00⟩B1B2 + g1τ2|10⟩q1q2 |1010⟩a1a2A1A2 |11⟩B1B2

+ g1τ2|11⟩q1q2 |1111⟩a1a2A1A2 |10⟩B1B2 + g2τ1|01⟩q1q2

|0100⟩a1a2A1A2 |01⟩B1B2 + g2τ1|00⟩q1q2 |0001⟩a1a2A1A2 |00⟩B1B2

+ g2τ2|11⟩q1q2 |1110⟩a1a2A1A2 |11⟩B1B2 + g2τ2|10⟩q1q2

|1011⟩a1a2A1A2 |10⟩B1B2 + g3τ1|10⟩q1q2 |1000⟩a1a2A1A2 |01⟩B1B2

+ g3τ1|11⟩q1q2 |1101⟩a1a2A1A2 |00⟩B1B2 + g3τ2|00⟩q1q2

|0010⟩a1a2A1A2 |11⟩B1B2 + g3τ2|01⟩q1q2 |0111⟩a1a2A1A2 |10⟩B1B2

+ g4τ1|11⟩q1q2 |1100⟩a1a2A1A2 |01⟩B1B2 + g4τ1|10⟩q1q2

|1001⟩a1a2A1A2 |00⟩B1B2 + g4τ2|01⟩q1q2 |0110⟩a1a2A1A2 |11⟩B1B2

+ g4τ2|00⟩q1q2
|0011⟩a1a2A1A2

|10⟩B1B2
).

U A1A2q1q2
a1a2

= |00⟩A1A2
⟨00| ⊗ |00⟩q1q2

⟨00| ⊗ ua1a2
1 + |00⟩A1A2

⟨00|

⊗ |01⟩q1q2
⟨01| ⊗ ua1a2

2 + |00⟩A1A2
⟨00| ⊗ |10⟩q1q2

⟨10|

⊗ ua1a2
2 + |00⟩A1A2

⟨00| ⊗ |11⟩q1q2
⟨11| ⊗ ua1a2

1

+ |01⟩A1A2
⟨01| ⊗ |00⟩q1q2

⟨00| ⊗ ua1a2
1 + |01⟩A1A2

⟨01|

⊗ |01⟩q1q2
⟨01| ⊗ ua1a2

2 + |01⟩A1A2
⟨01| ⊗ |10⟩q1q2

⟨10|

⊗ ua1a2
2 + |01⟩A1A2

⟨01| ⊗ |11⟩q1q2
⟨11| ⊗ ua1a2

1

+ |10⟩A1A2⟨10| ⊗ |00⟩q1q2⟨00| ⊗ I + |10⟩A1A2⟨10|

⊗ |01⟩q1q2⟨01| ⊗ I + |10⟩A1A2⟨10| ⊗ |10⟩q1q2⟨10| ⊗ I

+ |10⟩A1A2⟨10| ⊗ |11⟩q1q2⟨11| ⊗ I + |11⟩A1A2⟨11|

⊗ |00⟩q1q2⟨00| ⊗ I + |11⟩A1A2⟨11| ⊗ |01⟩q1q2⟨01| ⊗ I

+ |11⟩A1A2⟨11| ⊗ |10⟩q1q2⟨10| ⊗ I

+ |11⟩A1A2⟨11| ⊗ |11⟩q1q2⟨11| ⊗ I,



where I stands for 4 × 4 identity matrix, and the unitary operators ua1a2
1  and ua1a2

2  are
given by

After the operation U
A1A2q1q2
a1a2  on the quantum state |Γ2⟩, Alice executes U

a1q1

Not  and 
U

a2q2

Not  again, the above state evolves into the state

ua1a2
1 = ,

⎡⎢⎣ τ2

τ1
0 0 √1 − ( τ2

τ1
)2

0 1 0 0

0 0 1 0

√1 − ( τ2

τ1
)2 0 0 − τ2

τ1

⎤⎥⎦u
a1a2

2 = .

⎡⎢⎣ 1 0 0 0

0 τ2

τ1
√1 − ( τ2

τ1
)2 0

0 √1 − ( τ2

τ1
)2 − τ2

τ1
0

0 0 0 1

⎤⎥⎦



(13.31)

Again, Alice performs two CNOT operation U A1a1
Not  and U A2a2

Not  on qubits (a1, A1) and 
(a2, A2), and after that the above state |Γ3⟩ evolve into the state

|Γ3⟩ =
1

√2
(g1τ2|00⟩q1q2

|00⟩a1a2
|00⟩A1A2

|01⟩B1B2
+ g1√τ 2

1 − τ 2
2 |11⟩q1q2

|11⟩a1a2 |00⟩A1A2 |01⟩B1B2 + g1τ2|00⟩q1q2 |01⟩a1a2 |01⟩A1A2 |00⟩B1B2

+ g1√τ 2
1 − τ 2

2 |11⟩q1q2
|10⟩a1a2

|01⟩A1A2
|00⟩B1B2

+ g1τ2|00⟩q1q2

|10⟩a1a2 |10⟩A1A2 |11⟩B1B2 + g1τ2|00⟩q1q2 |11⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g2τ2|00⟩q1q2
|00⟩a1a2

|01⟩A1A2
|00⟩B1B2

+ g2√τ 2
1 − τ 2

2 |11⟩q1q2

|11⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g2τ2|00⟩q1q2 |01⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g2√τ 2
1 − τ 2

2 |11⟩q1q2
|10⟩a1a2

|00⟩A1A2
|01⟩B1B2

+ g2τ2|00⟩q1q2

|10⟩a1a2 |11⟩A1A2 |10⟩B1B2 + g2τ2|00⟩q1q2 |11⟩a1a2 |10⟩A1A2 |11⟩B1B2

+ g3τ2|00⟩q1q2 |00⟩a1a2 |10⟩A1A2 |11⟩B1B2 + g3τ2|00⟩q1q2 |01⟩a1a2

|11⟩A1A2 |10⟩B1B2 − g3τ2|00⟩q1q2 |10⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g3√τ 2
1 − τ 2

1 |11⟩q1q2
|01⟩a1a2

|00⟩A1A2
|01⟩B1B2

− g3τ2|00⟩q1q2

|11⟩a1a2
|01⟩A1A2

|00⟩B1B2
+ g3√τ 2

1 − τ 2
2 |11⟩q1q2

|00⟩a1a2

|01⟩A1A2 |00⟩B1B2 + g4τ2|00⟩q1q2 |00⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g4τ2|00⟩q1q2 |01⟩a1a2 |10⟩A1A2 |11⟩B1B2 − g4τ2|00⟩q1q2 |10⟩a1a2

|01⟩A1A2
|00⟩B1B2

+ g4√τ 2
1 − τ 2

2 |11⟩q1q2
|01⟩a1a2

|01⟩A1A2

|00⟩B1B2 − g4τ2|00⟩q1q2 |11⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g4√τ 2
1 − τ 2

2 |11⟩q1q2
|00⟩a1a2

|00⟩A1A2
|01⟩B1B2

).



(13.32)

The state |Γ4⟩ given in Eq. (13.32) can be written in a simplified form as

|Γ4⟩ =
1

√2
(g1τ2|00⟩q1q2

|00⟩a1a2
|00⟩A1A2

|01⟩B1B2
+ g1√τ 2

1 − τ 2
2 |11⟩q1q2

|11⟩a1a2 |00⟩A1A2 |01⟩B1B2 + g1τ2|00⟩q1q2 |00⟩a1a2 |01⟩A1A2 |00⟩B1B2

+ g1√τ 2
1 − τ 2

2 |11⟩q1q2
|11⟩a1a2

|01⟩A1A2
|00⟩B1B2

+ g1τ2|00⟩q1q2

|00⟩a1a2 |10⟩A1A2 |11⟩B1B2 + g1τ2|00⟩q1q2 |00⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g2τ2|00⟩q1q2
|01⟩a1a2

|01⟩A1A2
|00⟩B1B2

+ g2√τ 2
1 − τ 2

2 |11⟩q1q2

|10⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g2τ2|00⟩q1q2 |01⟩a1a2 |00⟩A1A2

|01⟩B1B2
+ g2√τ 2

1 − τ 2
2 |11⟩q1q2

|10⟩a1a2
|00⟩A1A2

|01⟩B1B2

+ g2τ2|00⟩q1q2 |01⟩a1a2 |11⟩A1A2 |10⟩B1B2 + g2τ2|00⟩q1q2 |01⟩a1a2

|10⟩A1A2 |11⟩B1B2 + g3τ2|00⟩q1q2 |10⟩a1a2 |10⟩A1A2 |11⟩B1B2

+ g3τ2|00⟩q1q2 |10⟩a1a2 |11⟩A1A2 |10⟩B1B2 − g3τ2|00⟩q1q2 |10⟩a1a2

|00⟩A1A2
|01⟩B1B2

+ g3√τ 2
1 − τ 2

2 |11⟩q1q2
|01⟩a1a2

|00⟩A1A2
|01⟩B1B2

− g3τ2|00⟩q1q2
|10⟩a1a2

|01⟩A1A2
|00⟩B1B2

+ g3√τ 2
1 − τ 2

2 |11⟩q1q2

|01⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g4τ2|00⟩q1q2 |11⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g4τ2|00⟩q1q2 |11⟩a1a2 |10⟩A1A2 |11⟩B1B2 − g4τ2|00⟩q1q2

|11⟩a1a2
|01⟩A1A2

|00⟩B1B2
+ g4√τ 2

1 − τ 2
2 |11⟩q1q2

|00⟩a1a2
|01⟩A1A2

|00⟩B1B2 − g4τ2|00⟩q1q2 |11⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g4√τ 2
1 − τ 2

2 |11⟩q1q2
|00⟩a1a2

|00⟩A1A2
|01⟩B1B2

).



(13.33)

Now Alice makes two-qubit projection measurements on her qubits q1 and q2.

Case I
If the measurement result is |00⟩q1q2 , then the above state |Γ ′

4⟩ becomes

|Γ
′

4⟩ = √2τ2|00⟩q1q2
⊗

1

2
(g1|00⟩a1a2

|00⟩A1A2
|01⟩B1B2

+ g1|00⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g1|00⟩a1a2 |10⟩A1A2 |11⟩B1B2

+ g1|00⟩a1a2 |11⟩A1A2 |10⟩B1B2 + g2|01⟩a1a2 |01⟩A1A2 |00⟩B1B2

+ g2|01⟩a1a2 |00⟩A1A2 |01⟩B1B2 + g2|01⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g2|01⟩a1a2 |10⟩A1A2 |11⟩B1B2 + g3|10⟩a1a2 |10⟩A1A2 |11⟩B1B2

+ g3|10⟩a1a2 |11⟩A1A2 |10⟩B1B2 − g3|10⟩a1a2 |00⟩A1A2 |01⟩B1B2

− g3|10⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g4|11⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g4|11⟩a1a2 |10⟩A1A2 |11⟩B1B2 − g4|11⟩a1a2 |01⟩A1A2 |00⟩B1B2

− g4|11⟩a1a2
|00⟩A1A2

|01⟩B1B2
) +√τ 2

1 − τ 2
2 |11⟩q1q2

⊗

1

√2
(g1|11⟩a1a2

|00⟩A1A2
|01⟩B1B2

+ g1|11⟩a1a2
|01⟩A1A2

|00⟩B1B2

+ g2|10⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g2|10⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g3|01⟩a1a2 |00⟩A1A2 |01⟩B1B2 + g3|01⟩a1a2 |01⟩A1A2 |00⟩B1B2

+ g4|00⟩a1a2
|01⟩A1A2

|00⟩B1B2
+ g4|00⟩a1a2

|00⟩A1A2
|01⟩B1B2

).

|Γ
′′

4⟩ =
1

2
(g1|00⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g1|00⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g1|00⟩a1a2 |10⟩A1A2 |11⟩B1B2

+ g1|00⟩a1a2 |11⟩A1A2 |10⟩B1B2 + g2|01⟩a1a2 |01⟩A1A2 |00⟩B1B2

+ g2|01⟩a1a2 |00⟩A1A2 |01⟩B1B2 + g2|01⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g2|01⟩a1a2 |10⟩A1A2 |11⟩B1B2 + g3|10⟩a1a2 |10⟩A1A2 |11⟩B1B2

+ g3|10⟩a1a2 |11⟩A1A2 |10⟩B1B2 − g3|10⟩a1a2 |00⟩A1A2 |01⟩B1B2

− g3|10⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g4|11⟩a1a2 |11⟩A1A2 |10⟩B1B2

+ g4|11⟩a1a2 |10⟩A1A2 |11⟩B1B2 − g4|11⟩a1a2 |01⟩A1A2 |00⟩B1B2

− g4|11⟩a1a2 |00⟩A1A2 |01⟩B1B2).



(13.34)

Lastly, Alice executes two Bell-state measurements (BSM) on qubits (a1, A1) and 
(a2, A2). With the Bell basis the above state |Γ ′′

4⟩ can be expressed as

(13.35)

After the execution of Alice's measurement, she sends her results to Bob via 4-bit of
classical channel. Once Bob obtains classical messages from Alice, he performs an
appropriate unitary operation on his qubits to recover the intended state. The details of
the operations are given in Table 13.2.

Table 13.2

Bob's unitary operations conditioned on
Alice's outcomes ⏎

Alice's outcome Bob's operation

|Υ1⟩a1A1 |Υ1⟩a2A2 IB1 ⊗ (ϑx)B2

|Υ1⟩a1A1 |Υ2⟩a2A2 IB1 ⊗ (ϑzϑx)B2

|Γ
′′

4⟩ = (|Υ1⟩a1A1
⊗ |Υ1⟩a2A2

) ⊗ (g1|01⟩ + g2|00⟩ + g3|11⟩ + g4|10⟩)B1B2

+ (|Υ1⟩a1A1
⊗ |Υ2⟩a2A2

) ⊗ (g1|01⟩ − g2|00⟩ + g3|11⟩ − g4|10⟩)B1B2

+ (|Υ1⟩a1A1
⊗ |Υ3⟩a2A2

) ⊗ (g1|00⟩ + g2|01⟩ + g3|10⟩ + g4|11⟩)B1B2

+ (|Υ1⟩a1A1
⊗ |Υ4⟩a2A2

) ⊗ (g1|00⟩ − g2|01⟩ + g3|10⟩ − g4|11⟩)B1B2

+ (|Υ2⟩a1A1
⊗ |Υ1⟩a2A2

) ⊗ (g1|01⟩ + g2|00⟩ − g3|11⟩ − g4|10⟩)B1B2

+ (|Υ2⟩a1A1
⊗ |Υ2⟩a2A2

) ⊗ (g1|01⟩ − g2|00⟩ − g3|11⟩ + g4|10⟩)B1B2

+ (|Υ2⟩a1A1
⊗ |Υ3⟩a2A2

) ⊗ (g1|00⟩ + g2|01⟩ − g3|10⟩ − g4|11⟩)B1B2

+ (|Υ2⟩a1A1
⊗ |Υ4⟩a2A2

) ⊗ (g1|00⟩ − g2|01⟩ − g3|10⟩ + g4|11⟩)B1B2

+ (|Υ3⟩a1A1
⊗ |Υ1⟩a2A2

) ⊗ (g1|11⟩ + g2|10⟩ − g3|01⟩ − g4|00⟩)B1B2

+ (|Υ3⟩a1A1
⊗ |Υ2⟩a2A2

) ⊗ (g1|11⟩ − g2|10⟩ − g3|01⟩ + g4|00⟩)B1B2

+ (|Υ3⟩a1A1
⊗ |Υ3⟩a2A2

) ⊗ (g1|10⟩ + g2|11⟩ − g3|00⟩ − g4|01⟩)B1B2

+ (|Υ3⟩a1A1
⊗ |Υ4⟩a2A2

) ⊗ (g1|10⟩ − g2|11⟩ − g3|00⟩ + g4|01⟩)B1B2

+ (|Υ4⟩a1A1
⊗ |Υ1⟩a2A2

) ⊗ (g1|11⟩ + g2|10⟩ + g3|01⟩ + g4|00⟩)B1B2

+ (|Υ4⟩a1A1
⊗ |Υ2⟩a2A2

) ⊗ (g1|11⟩ − g2|10⟩ + g3|01⟩ − g4|00⟩)B1B2

+ (|Υ4⟩a1A1
⊗ |Υ3⟩a2A2

) ⊗ (g1|10⟩ + g2|11⟩ + g3|00⟩ + g4|01⟩)B1B2

+ (|Υ4⟩a1A1
⊗ |Υ4⟩a2A2

) ⊗ (g1|10⟩ − g2|11⟩ + g3|00⟩ − g4|01⟩)B1B2
.



Alice's outcome Bob's operation

|Υ1⟩a1A1 |Υ3⟩a2A2 IB1 ⊗ (I)B2

|Υ1⟩a1A1 |Υ4⟩a2A2 IB1 ⊗ (ϑz)B2

|Υ2⟩a1A1 |Υ1⟩a2A2 (ϑz)B1 ⊗ (ϑx)B2

|Υ2⟩a1A1 |Υ2⟩a2A2 (ϑz)B1 ⊗ (ϑzϑx)B2

|Υ2⟩a1A1 |Υ3⟩a2A2 (ϑz)B1 ⊗ (I)B2

|Υ2⟩a1A1 |Υ4⟩a2A2 (ϑz)B1 ⊗ (ϑz)B2

|Υ3⟩a1A1 |Υ1⟩a2A2 (ϑzϑx)B1 ⊗ (ϑx)B2

|Υ3⟩a1A1 |Υ2⟩a2A2 (ϑzϑx)B1 ⊗ (ϑzϑx)B2

|Υ3⟩a1A1 |Υ3⟩a2A2 (ϑzϑx)B1 ⊗ (I)B2

|Υ3⟩a1A1 |Υ4⟩a2A2 (ϑzϑx)B1 ⊗ (ϑz)B2

|Υ4⟩a1A1 |Υ1⟩a2A2 (ϑx)B1 ⊗ (ϑx)B2

|Υ4⟩a1A1 |Υ2⟩a2A2 (ϑx)B1 ⊗ (ϑzϑx)B2

|Υ4⟩a1A1 |Υ3⟩a2A2 (ϑx)B1 ⊗ (I)B2

|Υ4⟩a1A1 |Υ4⟩a2A2 (ϑx)B1 ⊗ (ϑz)B2

As an illustration, assume that Alice's measurement yields |Υ3⟩a1A1
⊗ |Υ2⟩a2A2

. Then
the state of the Bob's qubits becomes

(g1|11⟩ − g2|10⟩ − g3|01⟩ + g4|00⟩)B1B2

with success probability |τ2|2

8  and finally Bob performs an appropriate unitary operation
(ϑzϑx)B1 ⊗ (ϑzϑx)B2  given from Table 13.2 to recover the original state. The total
success probability of the protocol for the case I is

|τ2|2

8
× 16 = 2|τ2|2.

Case II

If the measurement result of Alice is |11⟩q1q2 , the state |Γ
′

4⟩ given in Eq. (13.33)
becomes



(13.36)

The probability of getting this result is (1 − 2|τ2|2). We see from Eq. (13.36) that three
pairs of qubits (a1, a2), (A1, B1) and (A2, B2) are decoupled. Qubits (A2, B2) recover
to the initial Bell state of Eq. (13.26). Qubits (a1, a2) become a two-qubit arbitrary
entangled state different from Eq. (13.24). Such a result means that our teleportation
process fails. However, Alice can recover the initial state |ℵ⟩a1a2  by local operations 
(ϑx)a1 ⊗ (ϑx)a2  on her qubits a1 and a2. This is the specific meaning of probabilistic
resumable quantum teleportation scheme, that is, the initial state to be teleported can be
recovered by the sender when probabilistic teleportation fails. This ensures that the
teleportation process can be repeatedly performed between the sender and the receiver
until it succeeds. But at each time of its repetition, we need to have fresh quantum
resource for use.

|Γ
′′′

4 ⟩ =
1

√2
(g1|11⟩a1a2

|00⟩A1A2
|01⟩B1B2

+ g1|11⟩a1a2
|01⟩A1A2

|00⟩B1B2

+ g2|10⟩a1a2 |01⟩A1A2 |00⟩B1B2 + g2|10⟩a1a2 |00⟩A1A2 |01⟩B1B2

+ g3|01⟩a1a2 |00⟩A1A2 |01⟩B1B2 + g3|01⟩a1a2 |01⟩A1A2 |00⟩B1B2

+ g4|00⟩a1a2
|01⟩A1A2

|00⟩B1B2
+ g4|00⟩a1a2

|00⟩A1A2
|01⟩B1B2

)

= (g1|11⟩ + g2|10⟩ + g3|01⟩ + g4|00⟩)a1a2 |00⟩A1B1(|01⟩ + |10⟩)A2B2 .
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14.1 INTRODUCTION
In the actual quantum communication process, there will inevitably be noise in the
quantum channel. In this chapter, we consider teleportation protocols in noisy
environment. There are different types of noises, which are amplitude-damping, bit-flip,
phase-flip, phase-damping, depolarizing noise, etc. Throughout this chapter, four types of
noises are considered, namely amplitude-damping, bit-flip, phase-flip, phase-damping,
under which teleportation without and with control are presented. The analysis of fidelity
of the process against the variation of noise parameters are also discussed. Teleportation
through noisy environment have been discussed in a good number of papers like [43, 57,
60, 63, 69, 79, 92, 96, 114, 178, 198, 204].

14.2 TELEPORTATION OF AN ARBITRARY SINGLE-QUBIT STATE
UNDER NOISY ENVIRONMENT

In this section, we consider the protocol which is discussed in Chapter 8 under Subsection
8.2.

Suppose that the sender Alice prepares the entangled resource given in Eq. (8.2) and
distributes the qubit to the receiver Bob through a noisy environment. The particle A
belonging to Alice is not affected by the noise of the environment whereas the particle B is
affected by the environmental noise. Kraus operator is used here to characterize the
different types of noises. The density matrix corresponding to the quantum state |ℵ⟩a given
in Eq. (8.1) can be written as ϖa = |ℵ⟩a⟨ℵ| and that of the quantum resource as 
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ϖAB = |Υ1⟩AB⟨Υ1|. For different noises in the channel, the evolution of the quantum
resource under the effects of quantum noise can be expressed as

ε(ϖ) = ∑
i

Mi ϖAB M
†
i ,

(14.1)

where Mi = I A ⊗ K B
i , and Ki s are the Kraus operators corresponding to different noises.

Here, the superscripts denote the respective qubits and ‘†’ denotes the conjugate transpose.

The output state of the protocol can be expressed as

ϖout
i = TraA{Ui[ϖa ⊗ ε(ϖ)]U †

i },

(14.2)

where TraA is the partial trace over the pairs of qubits (a, A) and Ui, i ∈ {1, 2, 3, 4} is
given by

Ui = {IaA ⊗ (ϑi)B}{|Υi⟩aA⟨Υi| ⊗ IB}

with |Υi⟩aA⟨Υi| being Alice's measurement results, and (ϑi)B being Bob's corresponding
recovery operation.

The influence of noise on quantum teleportation can be measured by fidelity which, as
discussed in Chapter 7, is given by

F =B ⟨ℵ|ϖout
i |ℵ⟩B,

(14.3)

where |ℵ⟩B represents the ideal output state. Here, the ideal output state is

|ℵ⟩B = (g1|0⟩ + g2|1⟩).

If the fidelity is close to zero, then it indicates that a significant amount of information is
lost due to environmental noise. On the other hand, the value of fidelity close to one
implies that the communication is highly efficient and the transmitted quantum state is well
preserved. In the following we consider different types of noises separately.



14.2.1 TELEPORTATION IN AMPLITUDE-DAMPING NOISY ENVIRONMENT

The Kraus operators of amplitude damping noise are expressed as

where p is the intensity of the noise from amplitude damping.

According to the formula given in Eq. (14.1), the quantum resource changes to

(14.4)

Now, the combined state of the whole system is given by

ϖ
′
= |ℵ⟩a⟨ℵ| ⊗ εAD(ϖ)AB.

(14.5)

As an illustration, suppose that Alice's measurement result is |Υ4⟩aA. Then the reduced
density matrix of the final output state is given by

ϖ
out−Amp−Damp
4 = TraA{U4[ϖa ⊗ εAmp−Damp(ϖ)]U †

4},

(14.6)

where U4 is given by

U4 = {IaA ⊗ (ϑzϑx)B}{|Υ4⟩aA⟨Υ4| ⊗ IB}.

Therefore, the final output state is given by

(14.7)

where N1 is given as N1 = g
2
1(1 − p) + g

2
2 + g

2
1p = 1.

K0 = [ ], K1 = [ ]
1 0

0 √1 − p

0 √p

0 0

εAamp−Damp(ϖ)AB =
1

2
[{|00⟩ + √1 − p|11⟩} × {⟨00| + √1 − p⟨11|} + p|10⟩⟨10|].

ϖ
out−Amp−Damp
4 =

1

N1
[(g2|1⟩ + g1√1 − p|0⟩)

× (g2⟨1| + g1√1 − p⟨0|) + g
2
1p|1⟩⟨1|],



Now, according to the formula described in Eq. (14.3), the fidelity F  is

(14.8)

The variation of fidelity is given in Figure 14.1.

Figure 14.1  3-Dimensional surface plot for amplitude damping noise as a function of |g1|2 and noise intensity

parameter p. ⏎

14.2.2 TELEPORTATION IN BIT-FLIP NOISY ENVIRONMENT

The Kraus operators of Bit-flip noise are expressed as

F
Amp−Damp = [g2

1√1 − p + g
2
2]

2 + g
2
1g

2
2p

= [g2
1√1 − p − g

2
1 + 1]2 + g

2
1(1 − g

2
1)p.

K0 = [ ], K1 = [ ]
√1 − q 0

0 √1 − q

0 √q

√q 0



where q is the noise intensity parameter of bit-flip noise.

According to the formula in Eq. (14.1), the quantum resource becomes

(14.9)

Now, the combined state of the whole system is given by

(14.10)

As an illustration, suppose that Alice's measurement result is |Υ4⟩aA. Then the reduced
density matrix of the final output state is given by

ϖ
out−Bit−Flip

4 = TraA{U4[ϖa ⊗ (εBit−Flip(ϖ))AB]U †
4}

(14.11)

where U4 is given by

U4 = {IaA ⊗ (ϑzϑx)B}{|Υ4⟩aA⟨Υ4| ⊗ IB}.

Then, the final output state is given by

(14.12)

where N2 = (g
2
1 + g

2
2)(1 − q) + (g

2
2 + g

2
1)q = 1.

Now, according to the formula in (14.3), the fidelity F  is calculated as

εBit−Flip(ϖ)AB =
1

2
[(1 − q)(|00⟩ + |11⟩) × (⟨00| + ⟨11|)

+ q(|01⟩ + |10⟩) × (⟨01| + ⟨10|)].

ϖ
′

= |ℵ⟩a⟨ℵ| ⊗ εBit−Flip(ϖ)AB.

ϖ
out−Bit−Flip

4 =
1

N2
[(1 − q)(g2|1⟩ + g1|0⟩) × (g2⟨1| + g1⟨0|)

+ q(−g1|1⟩ − g2|0⟩) × (−g1⟨1| − g2⟨0|)],

F
Bit−Flip = [(g

2
1 + g

2
2)√1 − q]2 + 4g

2
1g

2
2q

= [(1 − q) + 4g
2
1(1 − g

2
1)q].



(14.13)

The variation of fidelity is given in Figure 14.2.

Figure 14.2  3-Dimensional surface plot for bit-flip noise as a function of |g1|2 and noise intensity parameter q. ⏎

14.2.3 TELEPORTATION IN PHASE-FLIP NOISY ENVIRONMENT

The Kraus operators of phase-flip noise are expressed as

where r is the noise intensity of phase-flip noise.

According to formula (14.1), the quantum resource becomes

K0 = [ ], K1 = [ ],
√1 − r 0

0 √1 − r

√r 0

0 −√r

1



(14.14)

We see that for any value of r ∈ [0 1], the state of the quantum resource remains as in the
noiseless case. So, the protocol remains unaffected by the phase-flip noise.

A remarkable feature with this case is that it demonstrates the fact that teleportation
protocols can be unaffected by noise in some cases.

14.2.4 TELEPORTATION IN PHASE-DAMPING NOISY ENVIRONMENT

The Kraus operators of phase-damping noise are expressed as:

where s is the noise intensity of phase-damping noise.

According to formula (14.1), the quantum resource changes to

(14.15)

Now, the combined state of the whole system is given by

(14.16)

As an illustration, suppose that Alice's measurement result is |Υ4⟩aA. Then the reduced
density matrix of the final output state is given by

ϖ
out−Phase−Damp
4 = TraA{U4[ϖa ⊗ (εPhase−Damp(ϖ))AB]U †

4}

εPhase−Flip(ϖ)AB =
1

2
[(1 − r)(|00⟩ + |11⟩) × (⟨00| + ⟨11|)

+ r(|00⟩ − |11⟩) × (⟨00| − ⟨11|)]

=
1

2
[(|00⟩ + |11⟩) × (⟨00| + ⟨11|)].

K0 = [ ], K1 = [ ], K2 = [ ],
√1 − s 0

0 √1 − s

√s 0

0 0

0 0

0 √s

εPhase−Damp(ϖ)AB =
1

2
[(1 − s)(|00⟩ + |11⟩) × (⟨00| + ⟨11|)

+ s(|00⟩ × ⟨00| + |11⟩ × ⟨11|)].

ϖ
′

= |ℵ⟩a⟨ℵ| ⊗ (εPhase−Damp(ϖ))AB.



(14.17)

where U4 is given by

U4 = {IaA ⊗ (ϑzϑx)B}{|Υ4⟩aA⟨Υ4| ⊗ IB}.

Then, the final output state is given by

(14.18)

where N3 = (g2
1 + g2

2)(1 − s) + (g2
2 + g2

1)s = 1.

Now, according to the formula provided in Eq. (14.3), the fidelity F  is calculated as

(14.19)

The variation of fidelity is given in Figure 14.3.

ϖ
out−Phase−Damp
4 =

1

N3
[(1 − s)(g2|1⟩ + g1|0⟩) × (g2⟨1| + g1⟨0|)

+ s(g
2
2|1⟩⟨1| + g

2
1|0⟩⟨0|)],

F
Phase−Damp = [(g

2
1 + g

2
2)√1 − s]2 + (√sg

2
1)2 + (√sg

2
2)2

= [(1 − s) + s(g
4
1 + (1 − g

2
1)2)].



Figure 14.3  3-Dimensional surface plot for phase-damping noise as a function of |g1|2 and noise intensity parameter s.

⏎

A study of Figure 14.1, Figure 14.2, Figure 14.3 reveal the expected feature that the
fidelity tends to unit value as the noise parameter tends to zero.

In the above the fidelity analysis is done only with respect to one of the four alternative
results in Alice's measurement. The other three cases can be similarly investigated.

14.3 CONTROLLED TELEPORTATION PROTOCOL OF 2-QUBIT
STATE UNDER NOISY ENVIRONMENT

In this section, we demonstrate a controlled teleportation protocol of 2-qubit state in a
noisy environment. Three parties, namely Alice, Bob, and David, are located in three
different places. Alice plays the role of sender and Bob acts as receiver, whereas David
plays the role of controller. The protocol has two parts. In the first part, we discuss the
protocol under ideal conditions without noise and in the second part, we discuss
teleportation through noisy environment.

Part 1: Teleportation in an ideal environment



Alice wishes to send an unknown 2-qubit state to Bob given by

|ℵ⟩a1a2
= (g1|01⟩ + g2|10⟩),

(14.20)

where g1 and g2 are unknown coefficients for Alice and meets the normalization condition

|g1|2 + |g2|2 = 1.

For this purpose, a 4-qubit entangled state is shared amongst Alice, Bob and David which
is given by

|E⟩AB1B2D =
1

√2
(|0100⟩ + |1011⟩),

(14.21)

where Alice possesses the qubit A, Bob owns the qubits {B1, B2} and the single qubit D
belongs to the controller David. The circuit generation for the entangled state (14.21) is
given in Figure 14.4.

Figure 14.4  Circuit diagram for the generation of the entangled resource given in Eq. (14.21). ⏎

Also it is assumed that all the parties are connected by classical communication channels.

The complete quantum system can be written as



(14.22)

Alice measures her qubits (a1, a2, A) in the basis given by

(14.23)

After the measurement, Alice sends her result to Bob and David using a classical channels.
After receiving the classical information from Alice, David starts his job by checking the
whole protocol. Once satisfied, he immediately executes a single-qubit measurement on
the basis given by

(14.24)

With the basis given in Eq. (14.23), the complete quantum system (14.22) can be rewritten
as

|Γ⟩ = |ℵ⟩a1a2 ⊗ |E⟩AB1B2D

= (g1|01⟩ + g2|10⟩)a1a2 ⊗
1

√2
(|0100⟩ + |1011⟩)AB1B2D

=
1

√2
(g1|010100⟩ + g1|011011⟩ + g2|100100⟩ + g2|101011⟩)

a1a2AB1B2D

.

|ς1⟩a1a2A =
|000⟩ + |111⟩

√2
, |ς2⟩a1a2A =

|000⟩ − |111⟩

√2
,

|ς3⟩a1a2A =
|001⟩ + |110⟩

√2
, |ς4⟩a1a2A =

|001⟩ − |110⟩

√2

|ς5⟩a1a2A =
|010⟩ + |101⟩

√2
, |ς6⟩a1a2A =

|010⟩ − |101⟩

√2
,

|ς7⟩a1a2A =
|011⟩ + |100⟩

√2
, |ς8⟩a1a2A =

|011⟩ − |100⟩

√2

|ζ1⟩D =
1

√2
(|0⟩ + |1⟩)

|ζ2⟩D =
1

√2
(|0⟩ − |1⟩).



(14.25)

Case I:
If the result of Alice's measurement yields |ς5⟩a1a2A, then the remaining qubits are in the
state

|Γ1⟩ = (g1|100⟩ + g2|011⟩)
B1B2D

.

Using the basis given in Eq. (14.24), the above state becomes

After the completion of David's measurement, he sends his outcomes to Bob via 1-bit
classical channel.

If David's outcome is |ζ1⟩D, then the state at Bob's qubit becomes (g1|10⟩ + g2|01⟩)B1B2 .
To recover the original state, Bob executes the Pauli operation, which is (ϑx)B1 ⊗ (ϑx)B2 .

If David's outcome is |ζ2⟩D, then the state at Bob's qubit becomes (g1|10⟩ − g2|01⟩)B1B2 .
To recover the original state, Bob executes the Pauli operation, which is 
(ϑx)B1 ⊗ (ϑxϑz)B2 .

Case II:
If the result of Alice's measurement yields |ς6⟩a1a2A, then the remaining qubits are in the
state

|Γ2⟩ = (g1|100⟩ − g2|011⟩)
B1B2D

.

Using the basis given in Eq. (14.24), the above state becomes

|Γ⟩ =
1

√2
(g1|010100⟩ + g1|011011⟩ + g2|100100⟩ + g2|101011⟩)

a1a2AB1B2D

= |ς5⟩a1a2A ⊗ (g1|100⟩ + g2|011⟩)
B1B2D

+ |ς6⟩a1a2A ⊗ (g1|100⟩ − g2|011⟩)
B1B2D

+ |ς7⟩a1a2A ⊗ (g1|011⟩ + g2|100⟩)
B1B2D

+ |ς8⟩a1a2A ⊗ (g1|011⟩ − g2|100⟩)
B1B2D

.

|Γ1⟩ = |ζ1⟩D ⊗ (g1|10⟩ + g2|01⟩)B1B2 + |ζ2⟩D ⊗ (g1|10⟩ − g2|01⟩)B1B2 .

|Γ2⟩ = |ζ1⟩D ⊗ (g1|10⟩ − g2|01⟩)B1B2 + |ζ2⟩D ⊗ (g1|10⟩ + g2|01⟩)B1B2 .



After the completion of David's measurement, he sends his outcomes to Bob via 1-bit
classical channel.

If David's outcome is |ζ1⟩D, then the state at Bob's qubit becomes (g1|10⟩ + g2|01⟩)B1B2 .
To recover the original state, Bob executes the Pauli operation, which is 
(ϑx)B1 ⊗ (ϑxϑz)B2 .

If David's outcome is |ζ2⟩D, then the state at Bob's qubit becomes (g1|10⟩ + g2|01⟩)B1B2 .
To recover the original state, Bob executes the Pauli operation, which is (ϑx)B1 ⊗ (ϑx)B2 .

Case III:
If the result of Alice's measurement yields |ς7⟩a1a2A, then the remaining qubits are in the
state

|Γ3⟩ = (g1|011⟩ + g2|100⟩)
B1B2D

.

Using the basis given in Eq. (14.24), the above state becomes

After the completion of David's measurement, he sends his outcomes to Bob via 1-bit
classical channel.

If David's outcome is |ζ1⟩D, then the state at Bob's qubit becomes (g1|01⟩ + g2|10⟩)B1B2
.

To recover the original state, Bob executes identity operation on his qubits, which is 
(I)B1

⊗ (I)B2
 which means that Bob need not act.

If David's outcome is |ζ2⟩D, then the state at Bob's qubit becomes (−g1|01⟩ + g2|10⟩)B1B2

. To recover the original state, Bob executes the Pauli operation, which is (I)B1
⊗ (ϑz)B2

.

Case IV:
If the result of Alice's measurement yields |ς8⟩a1a2A, then the remaining qubits are in the
state

|Γ4⟩ = (g1|011⟩ − g2|100⟩)
B1B2D

.

Using the basis given in Eq. (14.24), the above state becomes

|Γ3⟩ = |ζ1⟩D ⊗ (g1|01⟩ + g2|10⟩)B1B2 + |ζ2⟩D ⊗ (−g1|01⟩ + g2|10⟩)B1B2 .

|Γ4⟩ = |ζ1⟩D ⊗ (g1|01⟩ − g2|10⟩)B1B2 + |ζ2⟩D ⊗ (−g1|01⟩ − g2|10⟩)B1B2 .



After the completion of David's measurement, he sends his outcomes to Bob via 1-bit
classical channel.

If David's outcome is |ζ1⟩D, then the state at Bob's qubit becomes (g1|01⟩ − g2|10⟩)B1B2 .
To recover the original state, Bob executes identity operation on his qubits, which is 
(ϑz)B1 ⊗ (I)B2 .

If David's outcome is |ζ2⟩D, then the state at Bob's qubit becomes (−g1|01⟩ − g2|10⟩)B1B2

. To recover the original state, Bob executes the Pauli operation, which is (ϑz)B1 ⊗ (ϑz)B2 .

This is the description of the perfect protocol.

Part 2: Teleportation in a noisy environment

In this part, the same protocol discussed in Part 1 is analyzed in the presence of
environmental noise. The 4-qubit entangled state given in Eq. (14.21) is used as the
quantum resource. We suppose that the controller David produces the entangled resource
in his laboratory and circulates the required particles to the other parties through noisy
environment. The particle D belonging to David is not affected by environmental noise,
whereas the particles A, B1, and B2 are affected by environmental noise. We consider four
different types of noises which are given by Kraus operators discussed in Chapter 6. The
density matrix of the quantum resource can be described as

ϖAB1B2D = |E⟩AB1B2D⟨E|

and that of the intended state given in Eq. (14.20) as ϖa1a2 = |ℵ⟩a1a2⟨ℵ|.

The evolution of the quantum resource under the effects of quantum noise can be
expressed as follows:

ε(ϖ) = ∑
i,j,k

(K A
i ⊗ K B1

j ⊗ K B2

k
⊗ I D) ϖAB1B2D (K A

i ⊗ K B1
j ⊗ K B2

k
⊗ I D)†,

(14.26)

where Ki s are the Kraus operators corresponding to the type of existing noise and meet the
completeness criteria which is

∑(K A
i ⊗ K B1

j ⊗ K B2
k ⊗ I D)†(K A

i ⊗ K B1
j ⊗ K B2

k ⊗ I D) = I.

The output state of the protocol can be written as



ϖout
lm = Tra1a2AD{Ulm[ϖa1a2a3 ⊗ ε(ϖ)]U †

lm
}

(14.27)

where Tra1a2AD is the partial trace over qubits (a1, a2, A, D) and Ulm is given by

(14.28)

where l ∈ {1, 2, . . . , 8} and m ∈ {1, 2} with |ςl⟩a1a2A⟨ςl| and |ζm⟩D⟨ζm| representing the
corresponding Alice's measurement results and the controller David's measurement result,
respectively, and (ϑlm)B1B2  being Bob's appropriate unitary operation. In view of the
expression (14.25) only four outcomes |ςl⟩a1a2A⟨ςl| (l = 5, 6, 7, 8) are possible from the
measurement of Alice.

The influence of noise on quantum teleportation can be measured by fidelity F . The
definition of fidelity is based on the inner product between the output state and the ideal
output state, which is given by

F =B1B2 ⟨ℵ|ϖout
lm |ℵ⟩B1B2

(14.29)

where |ℵ⟩B1B2
 represents the ideal output state. Here, the ideal output state is

|ℵ⟩B1B2 = (g1|01⟩ + g2|10⟩).

14.3.1 CONTROLLED TELEPORTATION IN AMPLITUDE-DAMPING NOISY
ENVIRONMENT

The Kraus operators of the amplitude damping noise are defined as:

where λ is the strength of the amplitude damping noise.

According to formula given in Eq. (14.26), the quantum resource becomes

Ulm = {Ia1a2A ⊗ (ϑlm)B1B2 ⊗ ID}

{Ia1a2A ⊗ ⊗IB1B2 ⊗ |ζm⟩D⟨ζm|}

{|ςl⟩a1a2A⟨ςl| ⊗ IB1B2 ⊗ ID}

K0 = [ ], K1 = [ ]
1 0

0 √1 − λ

0 √λ

0 0



(14.30)

Now, the composite state of the whole system is given by

(14.31)

As in the illustration in part 1 of this section, let us assume that Alice's measurement
outcome yields |ς7⟩a1a2A and that David's measurement outcome is |ζ2⟩D. Then the density
matrix of the final output state is given by

ϖ
out−Amp−Damp
72 = Tra1a2AD{U72[ϖa1a2 ⊗ εAmp−Damp(ϖ)]U †

72}

(14.32)

where U72 is given by

(14.33)

Therefore, the final output state becomes

(14.34)

εAmp−Damp(ϖ) =
1

4
[(√ 1 − λ

2
|0100⟩ +

1 − λ

√2
|1011⟩) × (√ 1 − λ

2
⟨0100|

+
1 − λ

√2
⟨1011|) + (√ λ(1 − λ)

2
|1001⟩) × (√ λ(1 − λ)

2
⟨1001|)

+ (√ λ

2
|0000⟩) × (√ λ

2
⟨0000|) + (√ λ(1 − λ)

2
|0011⟩)

× (√ λ(1 − λ)

2
⟨0011|) + ( λ

√2
|0001⟩) × ( λ

√2
⟨0001|)].

ϖ
′

= |ℵ⟩a1a2⟨ℵ| ⊗ (εAmp−Damp(ϖ))AB1B2D.

U72 = {Ia1a2A ⊗ [(I)B1 ⊗ (ϑz)B2 ] ⊗ ID}

{Ia1a2A ⊗ ⊗IB1B2 ⊗ |ζ2⟩D⟨ζ2|}

{|ς7⟩a1a2A⟨ς7| ⊗ IB1B2 ⊗ ID}.

ϖ
out−Amp−Damp
72 =

5

∑
p=1

|Rp⟩B1B2⟨Rp|,



where {|Rp⟩B1B2 , p = 1, 2, 3, 4, 5} s are given by

Now, according to the formula in Eq. (14.29) the fidelity F  is

(14.35)

Figure 14.5  Schematic diagram for transfer of quantum states in ideal environment.

|R1⟩B1B2
= g1(1 − λ)|01⟩ + g2√1 − λ|10⟩,

|R2⟩B1B2
= − g1√1 − λ√λ|00⟩,

|R3⟩B1B2
= g2√λ|00⟩,

|R4⟩B1B2
= g2√1 − λ√λ|01⟩,

|R5⟩B1B2
= − g2λ|00⟩.

F
Amp−Damp = (λ − 1){2|g2|4(λ + √1 − λ − 1)

+ |g2|2(2 − 2√1 − λ − 3λ) + λ − 1}.



The variation of fidelity is shown in Figure 14.6. The other three cases corresponding to
Alice's measurement results can be similarly analyzed.

Figure 14.6  3-Dimensional surface plot of fidelity for amplitude damping noise as a function of |g2|2 and noise

intensity parameter λ. ⏎

14.3.2 CONTROLLED TELEPORTATION IN BIT-FLIP NOISY ENVIRONMENT

The Kraus operators for the Bit-flip noise are described as:

where κ is the noise intensity parameter of bit-flip noise.

According to the formula given in Eq. (14.26), the quantum resource becomes

K0 = [ ], K1 = [ ]
√1 − κ 0

0 √1 − κ

0 √κ

√κ 0



(14.36)

εBit−Flip(ϖ) =
1

4
[( (1 − κ)

3
2

√2
|0100⟩ +

(1 − κ)
3
2

√2
|1011⟩)

× ( (1 − κ)
3
2

√2
⟨0100| +

(1 − κ)
3
2

√2
⟨1011|)

+ (
(1 − κ)√κ

√2
|0110⟩ +

(1 − κ)√κ

√2
|1001⟩)

× (
(1 − κ)√κ

√2
⟨0110| +

(1 − κ)√κ

√2
⟨1001|)

+ (
(1 − κ)√κ

√2
|0000⟩ +

(1 − κ)√κ

√2
|1111⟩)

× (
(1 − κ)√κ

√2
⟨0000| +

(1 − κ)√κ

√2
⟨1111|)

+ (
κ√(1 − κ)

√2
|0010⟩ +

κ√(1 − κ)

√2
|1101⟩)

× (
κ√(1 − κ)

√2
⟨0010| +

κ√(1 − κ)

√2
⟨1101|)

+ (
(1 − κ)√κ

√2
|0011⟩ +

(1 − κ)√κ

√2
|1100⟩)

× (
(1 − κ)√κ

√2
⟨0011| +

(1 − κ)√κ

√2
⟨1100|)

+ (
κ√(1 − κ)

√2
|0001⟩ +

κ√(1 − κ)

√2
|1110⟩)

× (
κ√(1 − κ)

√2
⟨0001| +

κ√(1 − κ)

√2
⟨1110|)

+ (
κ√(1 − κ)

√2
|0111⟩ +

κ√(1 − κ)

√2
|1000⟩)

× (
κ√(1 − κ)

√2
⟨0111| +

κ√(1 − κ)

√2
⟨1000|)

+ ( κ
3
2

√2
|0101⟩ +

κ
3
2

√2
|1010⟩)

× ( κ
3
2

√2
⟨0101| +

κ
3
2

√2
⟨1010|)].



Now, the composite state of the whole system can be written as

(14.37)

As in the illustration in part 1 of this section, assume that the measurement result of Alice
and David is |ς7⟩a1a2A and |ζ2⟩D, respectively. Then the density matrix of the final output
state is given by

ϖ
out−Bit−Flip
72 = Tra1a2AD{U72[ϖa1a2 ⊗ εBit−Flip(ϖ)]U †

72},

(14.38)

where U72 is given in Eq. (14.33).

Therefore, the final output state becomes

(14.39)

where {|Sq⟩B1B2 q = 1, 2, . . . , 8} s are given by

Now, according to the formula in Eq. (14.29), the fidelity F  is

F
Bit−Flip = 1 + κ(κ − 1)(3 − 4|g2|2 + 4|g2|4).

(14.40)

ϖ
′
= |ℵ⟩a1a2

⟨ℵ| ⊗ (εBit−Flip(ϖ))AB1B2D.

ϖ
out−Bit−Flip
72 =

8

∑
q=1

|Sq⟩B1B2⟨Sq|,

|S1⟩B1B2 = g1(1 − κ)
3
2 |01⟩ + g2(1 − κ)

3
2 |10⟩,

|S2⟩B1B2 = − g1√κ(1 − κ)|00⟩ − g2√κ(1 − κ)|11⟩,

|S3⟩B1B2 = g2√κ(1 − κ)|00⟩ + g1√κ(1 − κ)|11⟩,

|S4⟩B1B2 = − g2κ√1 − κ|01⟩ − g1κ√1 − κ|10⟩,

|S5⟩B1B2 = g2√κ(1 − κ)|01⟩ + g1√κ(1 − κ)|10⟩,

|S6⟩B1B2 = − g2κ√1 − κ|00⟩ − g1κ√1 − κ|11⟩,

|S7⟩B1B2 = g1κ√1 − κ|00⟩ + g2κ√1 − κ|11⟩,

|S8⟩B1B2 = − g1κ
3
2 |01⟩ − g2κ

3
2 |10⟩.



The variation of fidelity F Bit−Flip is shown in Figure 14.7. The other three cases
corresponding to Alice's measurement results can be similarly analyzed.

Figure 14.7  3-Dimensional surface plot of fidelity for bit-flip noise as a function of |g2|2 and noise intensity parameter

κ. ⏎

14.3.3 CONTROLLED TELEPORTATION IN PHASE-FLIP NOISY
ENVIRONMENT

The Kraus operators of phase-flip noise are defined as:

where τ is the noise intensity parameter of phase-flip noise.

According to the formula given in Eq. (14.26), the quantum resource becomes

K0 = [ ], K1 = [ ]
√1 − τ 0

0 √1 − τ

√τ 0

0 −√τ



(14.41)

εPhase−Flip(ϖ) =
1

4
[( (1 − τ)

3
2

√2
|0100⟩ +

(1 − τ)
3
2

√2
|1011⟩)

× ( (1 − τ)
3
2

√2
⟨0100| +

(1 − τ)
3
2

√2
⟨1011|)

+ (
(1 − τ)√τ

√2
|0100⟩ −

(1 − τ)√τ

√2
|1011⟩)

× (
(1 − τ)√τ

√2
⟨0100| −

(1 − τ)√τ

√2
⟨1011|)

+ (−
(1 − τ)√τ

√2
|0100⟩ +

(1 − τ)√τ

√2
|1011⟩)

× (−
(1 − τ)√τ

√2
⟨0100| +

(1 − τ)√τ

√2
⟨1011|)

+ (−
τ√(1 − τ)

√2
|0100⟩ −

τ√(1 − τ)

√2
|1011⟩)

× (−
τ√(1 − τ)

√2
⟨0100| −

τ√(1 − τ)

√2
⟨1011|)

+ (
(1 − τ)√τ

√2
|0100⟩ −

(1 − τ)√τ

√2
|1011⟩)

× (
(1 − τ)√τ

√2
⟨0100| −

(1 − τ)√τ

√2
⟨1011|)

+ (
τ√(1 − τ)

√2
|0100⟩ +

τ√(1 − τ)

√2
|1011⟩)

× (
τ√(1 − τ)

√2
⟨0100| +

τ√(1 − τ)

√2
⟨1011|)

+ (−
τ√(1 − τ)

√2
|0100⟩ −

τ√(1 − τ)

√2
|1011⟩)

× (−
τ√(1 − τ)

√2
⟨0100| −

τ√(1 − τ)

√2
⟨1011|)

+ (−
τ

3
2

√2
|0100⟩ +

τ
3
2

√2
|1011⟩)

× (−
τ

3
2

√2
⟨0100| +

τ
3
2

√2
⟨1011|)].



The total state of the whole system can be expressed as

(14.42)

As discussed in the illustration of part 1 of this section, assume that the outcome of Alice's
measurement is |ς7⟩a1a2A and that of the controller David is |ζ2⟩D. Then the density matrix
of the final output state becomes

ϖ
out−Phase−Flip
72 = Tra1a2AD{U72[ϖa1a2 ⊗ εPhase−Flip(ϖ)]U †

72},

(14.43)

where U72 is given in Eq. (14.33).

Hence, the final output state is

(14.44)

where {|Hr⟩B1B2 , r = 1, 2, . . . , 8} s are given by

Now, according to the formula in Eq. (14.29), the fidelity F  is given by

F
Phase−Flip = 1 + 4τ|g2|2(|g2|2 − 1)(3 − 6τ + 4τ 2).

(14.45)

ϖ
′
= |ℵ⟩a1a2

⟨ℵ| ⊗ (εPhase−Flip(ϖ))AB1B2D.

ϖ
out−Phase−Flip
72 =

8

∑
r=1

|Hr⟩B1B2
⟨Hr|,

|H1⟩B1B2 = g1(1 − τ)
3
2 |01⟩ + g2(1 − τ)

3
2 |10⟩,

|H2⟩B1B2 = − g1√τ(1 − τ)|01⟩ + g2√τ(1 − τ)|10⟩,

|H3⟩B1B2 = g1√τ(1 − τ)|01⟩ − g2√τ(1 − τ)|10⟩,

|H4⟩B1B2 = − g1τ√1 − τ|01⟩ − g2τ√1 − τ|10⟩,

|H5⟩B1B2 = − g1√τ(1 − τ)|01⟩ + g2√τ(1 − τ)|10⟩,

|H6⟩B1B2 = g1τ√1 − τ|01⟩ + g2τ√1 − τ|10⟩,

|H7⟩B1B2 = − g1τ√1 − τ|01⟩ − g2τ√1 − τ|10⟩,

|H8⟩B1B2 = g1τ
3
2 |01⟩ − g2τ

3
2 |10⟩.



The variation of fidelity F Phase−Flip is shown in Figure 14.8. The other three cases
corresponding to Alice's measurement results can be similarly analyzed.

Figure 14.8  3-Dimensional surface plot of fidelity for phase-flip noise as a function of |g2|2 and noise intensity

parameter τ. ⏎

14.3.4 CONTROLLED TELEPORTATION IN PHASE-DAMPING NOISY
ENVIRONMENT

The Kraus operators of phase-damping noise are described as:

where μ is the noise strength of phase-damping noise.

According to the formula given in Eq. (14.26), the quantum resource becomes

K0 = [ ], K1 = [ ], K2 = [ ]
√1 − μ 0

0 √1 − μ

√μ 0

0 0

0 0

0 √μ



(14.46)

εPhase−Damp(ϖ) =
1

4
[( (1 − μ)

3
2

√2
|0100⟩ +

(1 − μ)
3
2

√2
|1011⟩)

× ( (1 − μ)
3
2

√2
⟨0100| +

(1 − μ)
3
2

√2
⟨1011|)

+ (
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√2
|0100⟩) × (
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Therefore, the overall state of the system is given by

(14.47)

As in the illustration in part 1 of this section, let us assume that Alice's measurement
outcome yields |ς7⟩a1a2A and that David's measurement outcome is |ζ1⟩D. Then the density
matrix of the final output state is as follows

ϖ
out−Phase−Damp
72 = Tra1a2AD{U72[ϖa1a2 ⊗ εPhase−Damp(ϖ)]U †

72},

(14.48)

where U72 is given in Eq. (14.33).

Therefore, the final output state is given by

(14.49)

where {|Js⟩B1B2, s=1,2,...,15} s are given by

ϖ
′
= |ℵ⟩a1a2

⟨ℵ| ⊗ (εPhase−Damp(ϖ))AB1B2D.

ϖ
out−Phase−Damp
72 =

15

∑
s=1

|Js⟩B1B2
⟨Js|,



According to the formula given in Eq. (14.29), the fidelity F  is

F
Phase−Damp = 1 + 2|g2|2μ(|g2|2 − 1){3 + μ(μ − 3)}.

(14.50)

The variation of fidelity F Phase−Damp is shown in Figure 14.9. The other three cases
corresponding to Alice's measurement results can be similarly analyzed.

|J1⟩B1B2 = g1(1 − μ)
3
2 |01⟩ + g2(1 − μ)

3
2 |10⟩,

|J2⟩B1B2 = g2√μ(1 − μ)|10⟩,

|J3⟩B1B2 = g1√μ(1 − μ)|01⟩,

|J4⟩B1B2 = g1√μ(1 − μ)|01⟩,

|J5⟩B1B2 = g1μ√1 − μ|01⟩,

|J6⟩B1B2 = g2√μ(1 − μ)|10⟩,

|J7⟩B1B2 = g2μ√1 − μ|10⟩,

|J8⟩B1B2 = g2√μ(1 − μ)|10⟩,

|J9⟩B1B2 = g2μ√1 − μ|10⟩,

|J10⟩B1B2 = g2μ√1 − μ|10⟩,

|J11⟩B1B2 = g2μ
3
2 |10⟩,

|J12⟩B1B2 = g1√μ(1 − μ)|01⟩,

|J13⟩B1B2 = g1μ√1 − μ|01⟩,

|J14⟩B1B2 = g1μ√1 − μ|01⟩,

|J15⟩B1B2 = g1μ
3
2 |01⟩.



Figure 14.9  3-Dimensional surface plot of fidelity for phase-damping noise as a function of |g2|2 and noise intensity

parameter μ. ⏎

In Figure 14.6, Figure 14.7, Figure 14.8, Figure 14.9, since the state is unknown to both
Alice and Bob, the exact value of |g2|2 is not available with these two parties. An average
fidelity can be calculated taking into account all four possible outcomes of Alice's
measurement for a fixed parameter of the corresponding type of noise.

A scrutiny of Figure 14.6, Figure 14.7, Figure 14.8, Figure 14.9 shows that the fidelity
tends to 1 as the noise parameter tends to zero. This is what is expected since in that
situation the protocol becomes a perfect protocol where the fidelity is of unit value.



15 Control of Noise in Teleportation
Processes
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15.1 INTRODUCTION
In this chapter, two mechanisms for minimizing the effect of noise on the teleportation
protocol are presented. The fidelity improvement is analyzed with respect to the
variations of control parameters. There are several works on this topic in recent times
[61, 75, 88, 89, 128, 129, 146, 175, 185].

15.2 PROTECTING TELEPORTATION PROTOCOL BY WEAK AND
REVERSAL MEASUREMENTS

Teleportation of single qubit in ideal environment was discussed in Chapter 8 which was
followed by the study of the effect of noise on the same protocol in Chapter 14.

In this section it is shown that fidelity can be improved by applications of weak
measurement (WM) and weak measurement reversal (WMR). The protocol for such
applications discussed in the following is given by Li et al. [89].

The WM and WMR operators on the single-qubit quantum system is described,
respectively, as

(15.1)

where the coefficients kw and kr are the strength of the weak and reversal measurements,
respectively.

Wm = [ ], Rm = [ ],
1 0

0 √1 − kw

√1 − kr 0

0 1
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The quantum resource, which is a Bell state here, is created by Alice and is given by 
|E⟩AB = 1

√2
(|00⟩ + |11⟩). It is shared with Bob by sending one particle to him through

a noisy environment whereby the entangled resource becomes affected with noise.

First, Alice makes a weak measurement on the qubit B before it is distributed. Then the
quantum channel is reduced to the state

|EW ⟩AB =
1

√2
(|00⟩ + √1 − kw|11⟩).

(15.2)

After that Alice distributes the particle B to Bob through the amplitude damping noisy
channel. Then according to Eq. (14.1), the quantum channel becomes

(15.3)

Upon receiving the particle B, Bob applies a WMR operator given in Eq. (15.1) on the
particle B. The above quantum state subsequently reduces to the state

(15.4)

Now we have the combined state of the whole system which becomes

ϖAD
W−R = |ℵ⟩a⟨ℵ| ⊗ εAD(ϖ)W−R.

(15.5)

As an illustration, assuming Alice obtains the measurement result |Υ4⟩aA, the reduced
density matrix is described as

ϖout−AD
W−R−4 = TraA{U4[ϖa ⊗ εAD(ϖ)W−R]U †

4},

εAD(ϖW ) =
1

2
[{|00⟩ +√(1 − kw)(1 − p)|11⟩}

× {⟨00| +√(1 − kw)(1 − p)⟨11|} + p(1 − kw)|10⟩⟨10|].

εAD(ϖW−R) =
1

2
[{√1 − kr|00⟩ +√(1 − kw)(1 − p)|11⟩} × {√1 − kr⟨00|

+√(1 − kw)(1 − p)⟨11|} + p(1 − kw)(1 − kr)|10⟩⟨10|].



(15.6)

where U4 is given by

U4 = {IaA ⊗ (σzσx)B}{|Υ4⟩aA⟨Υ4| ⊗ IB}.

Therefore, the final output state can be written as

(15.7)

where N1 = g2
1(1 − p)(1 − kw) + g2

2(1 − kr) + g2
1p(1 − kw)(1 − kr).

Based on the formula in Eq. (14.3), the fidelity F  is computed as

(15.8)

The optimal fidelity can be derived from Eq. (15.8) as

(15.9)

which is under the optimal reversal measurement condition kr = kw + p(1 − kw).

The fidelity is plotted in the Figure 15.1 for the process in the cases of amplitude
damping noise (F AD) and noise after protection by WM and WMR (F AD

OP
).

ϖout−AD
W−R−4 =

1

N1
[(g2√1 − kr|1⟩ + g1√(1 − kw)(1 − p)|0⟩) × (g2√1 − kr⟨1|

+ g1√(1 − kw)(1 − p)⟨0|) + g
2
1p(1 − kw)(1 − kr)|1⟩⟨1|],

F
AD
W−R =

[g2
1√(1 − kw)(1 − p) + g

2
2√1 − kr]2 + g

4
1g

2
2p

2(1 − kw)2(1 − kr)
2

N1
.

F AD
OP =

[g2
1√(1 − kw)(1 − p) + g2

2√(1 − kw)(1 − p)]2 + g4
1g2

2p
2(1 − kw)4(1 − p)2

g2
1(1 − p)(1 − kw) + g2

2(1 − kw)(1 − p) + g2
1p(1 − kw)2(1 − p)

=
1 + g4

1(1 − g2
1)p2(1 − kw)3(1 − p)

1 + g2
1p(1 − kw)

,



Figure 15.1  3-Dimensional surface comparison of the original amplitude damping fidelity F AD and the optimized

fidelity F AD
OP , for a fixed weak measurement strength kw = 0.3. ⏎

From Figure 15.1 we see that the optimized fidelity demonstrates a significant
improvement over the original for moderate to high damping levels illustrating the
effectiveness of WM and WMR applications.

15.3 CONTROL BY ENVIRONMENT ASSISTED MEASUREMENTS
(EAM)

Here we consider the same problem as in the previous section, but the control of noise is
done in a different way by employing EAM along with WM and WMR. The protocol is
given by Harraz et al. [56]. Other similar works employing EAM are discussed in [58,
176, 179].

Let us consider that Alice prepares a maximally entangled pair of particles and sends one
of them to Bob via a noisy quantum resource. The shared entangled state used as the
teleportation resource is represented as

1



|E⟩AB =
1

√2
(|0⟩A|0⟩B + |1⟩A|1⟩B),

(15.10)

where qubit A remains with Alice and qubit B is received by Bob.

The entanglement protection scheme involves three stages: pre-decoherence operations,
environment-assisted measurement (EAM) during decoherence, and post-decoherence
recovery. Before transmitting the qubit B, Alice applies a weak measurement (WM) and
a flip operation on it. She then sends the measurement outcome to Bob via the classical
channel used for teleportation. During transmission, EAM is applied to select system
states corresponding to invertible Kraus operators. Based on Alice's message, Bob
performs a post-flip operation followed by weak measurement reversal (WMR) to
recover his share of the entangled pair. The rest of the protocol is the same as the usual
teleportation protocol. The complete protocol is outlined in the following five steps. The
entire protocol is illustrated in Figure 15.2.

Figure 15.2  Schematic diagram for entanglement protection via EAM. ⏎

Step 1. Alice performs a weak measurement (WM) on the qubit intended for Bob using a
complete set of POVM operators P0 = L

†
0L0, P1 = L

†
1L1 with L0 and L1 being given by



(15.11)

where κ ∈ [0,π/2] controls the measurement strength. For κ = π/2, there is no
measurement, and for κ = 0, it becomes a projective measurement. The case 
0 < κ < π/2 corresponds to a weak measurement.

Step 2. Based on the measurement outcome, a pre-flip operation is applied to the qubit.
The flip operators are defined as

(15.12)

where I is the identity and ϑx is the Pauli-X operator.

If the outcome corresponds to L0, no action is needed (F0 = I). If the outcome is L1, 
ϑx (F1) is applied to the state.

Step 3. The prepared state is then transmitted to Bob through a noisy quantum
environment. The noise is assumed to be AD noise. The standard Kraus operators for AD
noise are:

(15.13)

where p is the noise parameter.

We implement the Environment-Assisted Measurement (EAM) on the decoherence
channel in the following way:

A measurement is performed on the channel, causing it to collapse into one of the
eigenstates of the measured observable. As a result, the system is projected into a state
conditioned on the corresponding outcome. If the channel collapses into the jth

eigenstate (j = 0, 1), the system evolves into the state ϖj

S
= KjϖS(0)K †

j , up to

L0 = [ ],L1 = [ ]cos(κ/2) 0

0 sin(κ/2)

sin(κ/2) 0

0 cos(κ/2)

F0 = I = [ ],F1 = ϑx = [ ]1 0

0 1

0 1

1 0

K0 = [ ], K1 = [ ]
1 0

0 √(1 − p)

0 √p

0 0



normalization. In our study, we consider only the outcome corresponding to the invertible
Kraus operator K0 and discard the measurement result of K1.

Step 4. Bob then performs post-flip operations. The outcome of the weak measurement
(WM) performed by Alice is communicated to Bob through a classical channel.
Accordingly, Bob applies the same post-flip operations as those used by Alice, as given
in Eq. (15.12).

Step 5. Finally, Bob applies the reversal measurement (WMR) to recover his part of the
entangled state. The RM operators is given by:

(15.14)

where u ∈ (0, 1) is the strength of the WMR.

At this stage, the protected entangled pair shared between Alice and Bob is prepared for
use in the standard quantum teleportation protocol.

The entire protection procedure can be represented by a control map denoted as C:

ϖ
fin

AB
= C(ϖAB) = ∑

j=0,1

(MR)jFjK0FjLj(ϖAB) × L
†
jF

†
j K

†
0F

†
j (MR)†

j

(15.15)

where ϖfin

AB
 is the protected entangled pair. Thus, after the completion of the protection

process, the entangled state shared between Alice and Bob transforms into the protected
state given by

(15.16)

where ϖfin
11 = ϖ

fin
44 = cos2 κ

2 u
2 + (1 − p)sin2 κ

2  and ϖfin
14 = ϖ

fin†

41 = usinκ√1 − p.

(MR)0 = [ ], (MR)1 = [ ]u 0

0 1

1 0

0 u

ϖ
fin

AB
=

1

2

⎡⎢⎣ϖfin
11 0 0 ϖ

fin
14

0 0 0 0

0 0 0 0

ϖ
fin
41 0 0 ϖ

fin
44

⎤⎥⎦



Due to the partial nature of the RM and the exclusion of certain outcomes during the
EAM process, the proposed scheme operates probabilistically, with an overall success
probability given by

success probability = Trace(ϖfin
AB) = cos2 κ

2
u2 + (1 − p)sin2 κ

2
.

(15.17)

Using the protected teleportation channel given in Eq. (15.16), Alice begins the standard
teleportation protocol. She does this by interacting with the unknown input state with her
part of the entangled pair. The input state |ℵin⟩a = g1|0⟩ + g2|1⟩ that Alice wants to
send to Bob is given by

(15.18)

where |g1|2 + |g2|2 = 1 and * denotes the complex conjugate.

At the end of the standard teleportation protocol, Bob obtains the output state ϖout,
which can be expressed as

(15.19)

where ϖout
11 = |g1|2,ϖout

44 = |g2|2 and ϖout
14 = ϖout†

41 =
g∗

1g2usinκ√1−p

cos2 κ
2 u

2+(1−p)sin2 κ
2

.

To assess the effectiveness of our protected quantum teleportation scheme, we calculate
the average teleportation fidelity between the input state in Eq. (15.18) and the output
state received by Bob in Eq. (15.19), averaged over all possible input states, as follows:

ϖin = |ℵin⟩⟨ℵin| = [ ]|g1|2
g1g

∗
2

g
∗
1g2 |g2|2

ϖout =
1

4
[ ]ϖout

11 ϖout
14

ϖout
41 ϖout

44

.

F
EAM
av = ∫ ⟨ℵin|ϖout|ℵin⟩dℵ

=
11

15
+

4usinκ√1 − p

15[cos2 κ
2 u

2 + (1 − p)sin2 κ
2 ]



(15.20)

Similarly, the average teleportation fidelity for the standard teleportation protocol
through an amplitude damping channel (AD) without any protection is calculated as

F
standard
av =

1

15
(4√1 − p −

7

2
p + 11).

(15.21)

To evaluate the performance of the proposed EAM-based protected teleportation scheme,
we consider the average teleportation fidelity F EAM

av  from Eq. (15.20) along with the
entanglement protection success probability provided in Eq. (15.21).

In Table. 15.1 fidelity and success probability are presented against WM strength κ and
RM strength u under the assumption that the decoherence rate is p = 0.5.

Table 15.1

Average Teleportation Fidelity and Success Probability of
Entanglement Protection in the EAM Scheme for Different
Measurement Strengths with Fixed p = 0.5. ⏎

WM strength (κ) WMR strength (u) F EAM
av success probability

π/4 0.3 1 0.15

π/6 0.5 0.84 0.25

π/3 0.7 0.96 0.5

0 1 0.73 1

There are some interesting outcomes from the data in Table 15.1.

The fidelity value 1 is attainable with proper choices of (κ,u) but with probability of
success being 0.15.

The usual teleportation in the absence of the protection discussed above, has an average
probability 0.80 with the decoherence parameter fixed at p = 0.5. It is possible to obtain
fidelity higher than this value by fixing the parameters (κ,u) appropriately with some
success probability. In the overall scenario the choices of the parameters (κ,u) determine
the level of control on the fidelity.



A Remote State Preparation
Scheme of Single-qubit
State
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Remote State Preparation (RSP) scheme is a quantum communication
scheme that allows one party, namely Alice, to prepare a known quantum
state at a remote location, namely in the location of Bob, using a previously
shared entangled resource and classical communication. Unlike quantum
teleportation, in RSP the quantum state to be prepared is known to the
sender but need not be physically available beforehand. There are several
works on this topic as, for instances, [8, 9, 80, 199].

We now describe a basic RSP protocol involving two parties: Alice (the
sender) and Bob (the receiver). Alice wants to remotely prepare a specific
single-qubit quantum state at Bob's site given as

|ℵ⟩ = ι1|0⟩ + ι2|1⟩,

(A.1)

where the parameters are known to Alice and satisfy the normalization
condition, that is,

https://doi.org/10.1201/9781003561439-A


|ι1|
2 + |ι2|

2 = 1.

To implement the protocol, Alice and Bob share a three-qubit Greenberger–
Horne– Zeilinger (GHZ) state as a quantum resource which is

|E⟩A1A2B =
1

√2
(|000⟩ + |111⟩),

(A.2)

where Alice holds the first two qubits A1, A2 and Bob holds the third qubit
B.

Based on the known values of ι1 and ι2, Alice now defines a set of four
mutually orthogonal two-qubit basis vectors for her qubits A1, A2, given by

(A.3)

Using this basis, the shared quantum resource can be written as

(A.4)

Alice then performs a measurement on her two qubits on the basis 
{|M1⟩, |M2⟩, |M3⟩, |M4⟩}. After the measurement, Alice communicates her

|M1⟩A1A2 = (ι1|00⟩ + ι2|11⟩),

|M2⟩A1A2 = (ι2|00⟩ − ι1|11⟩),

|M3⟩A1A2 = (ι1|01⟩ + ι2|10⟩),

|M4⟩A1A2 = (ι2|01⟩ − ι1|10⟩).

|E⟩A1A2B =
1

√2
[|M1⟩A1A2

⊗ (ι1|0⟩ + ι2|1⟩)B

+ |M2⟩A1A2 ⊗ (ι2|0⟩ − ι1|1⟩)B].



result to Bob using a classical channel. Based on this information, Bob
applies the corresponding unitary operation given in Table A.1 to recover
the target state |ℵ⟩.

Table A1

The appropriate unitary operations Bob
needs to apply are summarized below: ⏎

Alice's result State of Bob's site Bob's operation

|M1⟩A1A2 (ι1|0⟩ + ι2|1⟩)B I

|M2⟩A1A2 (ι2|0⟩ − ι1|1⟩)B σxσz

If the outcome of Alice's measurement is |M1⟩A1A2, then the state at Bob's
site becomes (ι1|0⟩ + ι2|1⟩)B, which is the same as the intended state. So in
this case Bob uses an identity operation, which is to say that Bob need not
act in any way.

If the outcome of Alice's measurement is |M2⟩A1A2, then the state at Bob's
site becomes (ι2|0⟩ − ι1|1⟩)B. To complete the protocol and obtain the
original quantum state, Bob applies a unitary operation σxσz.

Thus, Bob successfully reconstructs the desired state |ℵ⟩ using the shared
entangled channel and classical communication, although the state was
never physically transmitted and was never possessed by the party
intending to create the state at the site of the receiver Bob.



B Joint Remote State
Preparation Protocol of
Single-qubit State
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In Remote State Preparation (RSP), a single sender, typically referred to as Alice,
assists a receiver, Bob, in generating a quantum state known to her at Bob's
location using a shared entangled state and exchanging classical information. In
this process, the entire knowledge of the quantum state is possessed by a single
party, which may not be ideal in scenarios involving multiple parties. In some
scenarios, the complete information about the quantum state to be prepared may
not be available to a single party due to technical constraints. Instead, the
information is distributed between two separate parties. In that case, to enable the
remote preparation of such a state at a distant location, a new type of protocol
called Joint Remote State Preparation (JRSP) is introduced. Each sender only
knows partial information about the quantum state, and none of them alone can
perform the preparation. Joint remote state preparation protocols have been
discussed in a good number of papers like [4, 110, 119, 120, 197].

Here, we discuss a basic JRSP protocol involving two senders: Alice and Candy
and one receiver, namely Bob. Alice and Candy jointly want to remotely prepare
an arbitrary single-qubit state

|ℵ⟩a = ι1|0⟩ + ι2e
iκ|1⟩,
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(B.1)

in Bob's laboratory. The parameters ι1, ι2 satisfy the normalization condition, that
is, |ι1|2 + |ι2|2 = 1 and the phase parameter κ ∈ (0, 2π). Both senders know
only partial information about the state, and the receiver does not know anything
about the intended state. In this protocol, we assume that Alice knows ι1, ι2 and
Candy knows the phase parameter κ.

To initiate the protocol, three parties share a three-qubit maximally entangled
Greenberger–Horne–Zeilinger (GHZ) state as a quantum resource, which is given
by

|E⟩ACB =
1

√2
(|000⟩ + |111⟩),

(B.2)

where Alice holds the first qubit A, Candy holds the second qubit C and the third
qubit B belongs to Bob.

Based on the known information of ι1, ι2, Alice makes a projective measurement
of her single qubit on the basis given by

(B.3)

Using this basis, the shared quantum resource |E⟩ACB can be expressed as

|E⟩ACB =
1

√2
[|M1⟩A ⊗ (ι1|00⟩ + ι2|11⟩)CB + |M2⟩A ⊗ (ι2|00⟩ − ι1|11⟩)CB].

After the measurement, Alice transmits her outcomes through 1-bit classical
channels to Candy and the receiver Bob. Depending on the measurement results

|M1⟩A = (ι1|0⟩ + ι2|1⟩),

|M2⟩A = (ι2|0⟩ − ι1|1⟩).



received from Alice, Candy chooses two sets of basis for measurement of his
qubit.

If Alice's outcome is |M1⟩A, then Candy performs a projective measurement on
the basis given by

(B.4)

If Alice's outcome is |M2⟩A, then Candy performs a projective measurement on
the basis given by

(B.5)

Case I:

If Alice's result is |M1⟩A, then the state of the remaining particles becomes
(ignoring the constant factor)

|E1⟩ = (ι1|00⟩ + ι2|11⟩)CB.

Using the basis B.4, the above reduced state |E1⟩CB can be written as

|E1⟩ =
1

2
[|N 1

1 ⟩C ⊗ (ι1|0⟩ + ι2e
iκ|1⟩)B + |N 1

2 ⟩C ⊗ (ι1|0⟩ − ι2e
iκ|1⟩)B]

Candy now performs his single-qubit projective measurement with the basis 
{|N 1

1 ⟩, |N 1
2 ⟩}. After the measurement, he sends his result classically to Bob.

Finally, after receiving all the classical information from the senders, he applies
an appropriate unitary operation given in Table B.1 to prepare the intended state 
ℵ⟩.

|N 1
1 ⟩C = (|0⟩ + e

−iκ|1⟩),

|N 1
2 ⟩C = (|0⟩ − e

−iκ|1⟩).

|N 2
1 ⟩C = (e

−iκ|0⟩ + |1⟩),

|N 2
2 ⟩C = (e

−iκ|0⟩ − |1⟩).



Table B1

The appropriate unitary operations performed by Bob
corresponding to Alice's outcome |M1⟩A ⏎

Candy's result State of Bob's site Unitary operation performed by Bob

|N 1
1 ⟩C (ι1|0⟩ + ι2e

iκ|1⟩)B I

|N 1
2 ⟩C (ι1|0⟩ − ι2e

iκ|1⟩)B σz

If the outcome of Candy's measurement is |N 1
1 ⟩C , then the reduced state at Bob's

site becomes (ι1|0⟩ + ι2e
iκ|1⟩)B, which is the same as the intended state. So in

this case Bob uses an identity operation, that is, does not have to act.

If the outcome of Alice's measurement is |N 1
2 ⟩C , then the state at Bob's site

becomes (ι1|0⟩ − ι2e
iκ|1⟩)B. To complete the protocol and obtain the intended

quantum state, Bob applies a unitary operation σz on his qubit. That is end of the
protocol.

Case II:
If Alice's result is |M2⟩A, then the state of the remaining particles becomes
(ignoring the constant factor)

|E2⟩ = (ι2|00⟩ − ι1|11⟩)CB.

Using the basis B.5, the above reduced state |E2⟩CB can be written as

|E2⟩ =
1

2
[|N 2

1 ⟩C ⊗ (e
iκ

ι2|0⟩ + ι1|1⟩)B + |N 2
2 ⟩C ⊗ (e

iκ
ι2|0⟩ − ι1|1⟩)B]

Candy now performs his single-qubit projective measurement with the basis 
{|N 2

1 ⟩, |N 2
2 ⟩}. After the measurement, he sends his result classically to Bob.

Finally, after receiving all the classical information from the senders, he applies
an appropriate unitary operation given in Table B.2 to recover the intended state 
|ℵ⟩.



Table B2

The appropriate unitary operations performed by Bob
corresponding to Alice's outcome |M1⟩A ⏎

Candy's result State of Bob's site Unitary operation performed by Bob

|N 2
1 ⟩C (e

iκ
ι2|0⟩ + ι1|1⟩)B σx

|N 2
2 ⟩C (e

iκ
ι2|0⟩ − ι1|1⟩)B σxσz

If the outcome of Candy's measurement is |N 2
1 ⟩C , then the state at Bob's site

becomes (eiκι2|0⟩ + ι1|1⟩)B. To obtain the intended state, Bob uses a unitary
operation σx on his particle.

If the outcome of Candy's measurement is |N 2
2 ⟩C , then the state at Bob's site

becomes (eiκι2|0⟩ − ι1|1⟩)B. To complete the protocol and obtain the original
quantum state, Bob applies a unitary operation σxσz on his qubit. That is the end
of the protocol.



C Hybrid Bi-directional
Communication Protocol

DOI: 10.1201/9781003561439-C

In the theory of quantum communications, teleportation enables the transfer of an
unknown quantum state using shared entangled resource and classical
communication while RSP allows the creation of a known quantum state at a
distant location when the sender has knowledge of the state.

A hybrid bi-directional communication protocol integrates both QT and RSP in a
single protocol, enabling simultaneous two-way quantum information transfer
between two parties (namely Alice and Bob). In such protocols, one party (say
Alice) teleports an unknown quantum state to Bob, while Bob simultaneously
prepares a known quantum state at Alice's location using a prior shared entangled
resource. The following works [28, 102, 153, 174] include hybrid protocols
amongst others.

Here, we assume that Alice wants to transfer an unknown single-qubit state |ℵ1⟩a

to Bob and simultaneously Bob wants to create a known single-qubit state |ℵ2⟩ to
Alice. These states are given by

(C.1)

where coefficients ι1, ι2, φ1, φ2 meet the normalization conditions, that is,

|ℵ1⟩a = ι1|0⟩ + ι2|1⟩,

|ℵ2⟩ = φ1|0⟩ + φ2|1⟩,

https://doi.org/10.1201/9781003561439-C


|ι1|
2 + |ι2|

2 = 1,

and

|φ1|
2 + |φ2|

2 = 1.

To complete the communication task, Alice and Bob share a 4-qubit entangled
state as a quantum resource, which is given by

|E⟩A1B1A2B2 =
1

2
(|0000⟩ + |0011⟩ + |1100⟩ − |1111⟩)A1B1A2B2,

(C.2)

where the qubits (a, A1, A2) and (B1, B2) are held by Alice and Bob, respectively.

The entire system can be expressed as

(C.3)

Bob's measurement basis is given by

(C.4)

Alice's measurement basis is given by

|Γ⟩ = |ℵ1⟩a ⊗ |E⟩A1B1A2B2

= (ι1|0⟩ + ι2|1⟩)a ⊗
1

2
(|0000⟩ + |0011⟩ + |1100⟩ − |1111⟩)A1B1A2B2.

|M1⟩B2 = φ1|0⟩ + φ2|1⟩,

|M2⟩B2 = φ2|0⟩ − φ1|1⟩.

1



(C.5)

The choice of such bases is possible since the coefficients φ1, φ2 are known to
Bob.

Using the above basis {|M1⟩B2, |M2⟩B2}, the entire quantum system can be
rewritten as

(C.6)

After the measurement, Bob classically sends his results to Alice. After that the
following cases arise. A nonlocal (CZ) -operation is involved in each case. This
operation can be performed by a third party who can have access to the two
involved qubits.

Case 1:

|Υ1⟩aA1 =
1

√2
(|00⟩ + |11⟩),

|Υ2⟩aA1 =
1

√2
(|00⟩ − |11⟩),

|Υ3⟩aA1 =
1

√2
(|01⟩ + |10⟩),

|Υ4⟩aA1 =
1

√2
(|01⟩ − |10⟩).

|Γ⟩ = (ι1|0⟩ + ι2|1⟩)a ⊗
1

2
(|0000⟩ + |0011⟩ + |1100⟩ − |1111⟩)A1B1A2B2

= (ι1|0⟩ + ι2|1⟩)a ⊗
1

2
[|M1⟩B2 ⊗ (φ1|000⟩ + φ2|001⟩ + φ1|110⟩

− φ2|111⟩)
A1B1A2

+ |M2⟩B2 ⊗ (φ2|000⟩ − φ1|001⟩ + φ2|110⟩

+ φ1|111⟩)
A1B1A2

].



If Bob's measurement result is |M1⟩B2, then the reduced state of the remaining
particles becomes

(C.7)

Now Alice makes her measurement on the basis 
{|Υ1⟩aA1

, |Υ2⟩aA1
, |Υ3⟩aA1

, |Υ4⟩aA1
} and after completing the measurement then

transmits the measurement result to Bob.

After that a quantum phase gate (CZ) operation is applied on qubit pairs (B1, A2)

with qubit A2 acting as a control qubit and qubit B1 as the target qubit.

Sub-case I Suppose Alice's measurement outcome is |Υ1⟩aA1
, then the reduced

state becomes

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operation to get the original state. In this case, both the parties
perform identity operation on their respective particles, that is, they are not
required to act in the situation under this sub-case. That is the end of the protocol.

Sub-case II If Alice's measurement outcome is |Υ2⟩aA1, then the reduced state
becomes

|Γ1⟩ = (ι1|0⟩ + ι2|1⟩)a ⊗
1

2
(φ1|000⟩ + φ2|001⟩ + φ1|110⟩ − φ2|111⟩)

A1B1A2

=
1

√2
[|Υ1⟩aA1 ⊗ (ι1φ1|00⟩ + ι1φ2|01⟩ + ι2φ1|10⟩ − ι2φ2|11⟩)B1A2

+ |Υ2⟩aA1
⊗ (ι1φ1|00⟩ + ι1φ2|01⟩ − ι2φ1|10⟩ + ι2φ2|11⟩)B1A2

+ |Υ3⟩aA1
⊗ (ι1φ1|10⟩ − ι1φ2|11⟩ + ι2φ1|00⟩ + ι2φ2|01⟩)B1A2

+ |Υ4⟩aA1 ⊗ (ι1φ1|10⟩ − ι1φ2|11⟩ − ι2φ1|00⟩ − ι2φ2|01⟩)B1A2].

(ι1φ1|00⟩ + ι1φ2|01⟩ + ι2φ1|10⟩ − ι2φ2|11⟩)B1A2

CZ (ι1φ1|00⟩ + ι1φ2|01⟩ + ι2φ1|10⟩ + ι2φ2|11⟩)B1A2

= (ι1|0⟩ + ι2|1⟩)B1 ⊗ (φ1|0⟩ + φ2|1⟩)A2

−→



Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (I)A2 and (σz)B1 to recover the original state. That
is the end of the protocol.

Sub-case III If Alice's measurement outcome is |Υ3⟩aA1, then the reduced state
becomes

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (I)A2 and (σx)B1 to recover the original state. That
is the end of the protocol.

Sub-case IV If Alice's measurement outcome is |Υ4⟩aA1, then the reduced state
becomes

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (I)A2 and (σzσx)B1 to recover the original state.
That is the end of the protocol.

Case 2:

If Bob's measurement result is |M2⟩B2, then the reduced state of the remaining
particles becomes

(ι1φ1|00⟩ + ι1φ2|01⟩ − ι2φ1|10⟩ + ι2φ2|11⟩)B1A2

CZ (ι1φ1|00⟩ + ι1φ2|01⟩ − ι2φ1|10⟩ − ι2φ2|11⟩)B1A2

= (ι1|0⟩ − ι2|1⟩)B1 ⊗ (φ1|0⟩ + φ2|1⟩)A2

−→

(ι1φ1|10⟩ − ι1φ2|11⟩ + ι2φ1|00⟩ + ι2φ2|01⟩)B1A2

CZ (ι1φ1|10⟩ + ι1φ2|11⟩ + ι2φ1|00⟩ + ι2φ2|01⟩)B1A2

= (ι1|1⟩ + ι2|0⟩)B1 ⊗ (φ1|0⟩ + φ2|1⟩)A2

−→

(ι1φ1|10⟩ − ι1φ2|11⟩ − ι2φ1|00⟩ − ι2φ2|01⟩)B1A2

CZ (ι1φ1|10⟩ + ι1φ2|11⟩ − ι2φ1|00⟩ − ι2φ2|01⟩)B1A2

= (ι1|1⟩ − ι2|0⟩)B1 ⊗ (φ1|0⟩ + φ2|1⟩)A2

−→



(C.8)

Now Alice makes her measurement on the basis 
{|Υ1⟩aA1, |Υ2⟩aA1, |Υ3⟩aA1, |Υ4⟩aA1} and after completing the measurement she
transmits the outcome to Bob through a classical channel.

After that a quantum phase gate (CZ) operation is applied on qubit pairs (B1, A2)

with qubit A2 acting as a control qubit and qubit B1 as the target qubit.

Sub-case I If Alice's measurement outcome is |Υ1⟩aA1, then the reduced state
becomes

Finally, after receiving the measurement results, Alice and Bob perform
appropriate unitary operation (σxσz)A2 and (I)B1 on their respective qubits to get
the original state. That is the end of the protocol.

Sub-case II If Alice's measurement outcome is |Υ2⟩aA1, then the reduced state
becomes

|Γ2⟩ = (ι1|0⟩ + ι2|1⟩)a ⊗
1

2
(φ2|000⟩ − φ1|001⟩ + φ2|110⟩ + φ1|111⟩)

A1B1A2

=
1

√2
[|Υ1⟩aA1

⊗ (ι1φ2|00⟩ − ι1φ1|01⟩ + ι2φ2|10⟩ + ι2φ1|11⟩)B1A2

+ |Υ2⟩aA1 ⊗ (ι1φ2|00⟩ − ι1φ1|01⟩ − ι2φ2|10⟩ − ι2φ1|11⟩)B1A2

+ |Υ3⟩aA1 ⊗ (ι1φ2|10⟩ + ι1φ1|11⟩ + ι2φ2|00⟩ − ι2φ1|01⟩)B1A2

+ |Υ4⟩aA1
⊗ (ι1φ2|10⟩ + ι1φ1|11⟩ − ι2φ2|00⟩ + ι2φ1|01⟩)B1A2

].

(ι1φ2|00⟩ − ι1φ1|01⟩ + ι2φ2|10⟩ + ι2φ1|11⟩)B1A2

CZ (ι1φ2|00⟩ − ι1φ1|01⟩ + ι2φ2|10⟩ − ι2φ1|11⟩)B1A2

= (ι1|0⟩ + ι2|1⟩)B1 ⊗ (φ2|0⟩ − φ1|1⟩)A2

−→

(ι1φ2|00⟩ − ι1φ1|01⟩ − ι2φ2|10⟩ − ι2φ1|11⟩)B1A2

CZ (ι1φ2|00⟩ − ι1φ1|01⟩ − ι2φ2|10⟩ + ι2φ1|11⟩)B1A2

= (ι1|0⟩ − ι2|1⟩)B1 ⊗ (φ2|0⟩ − φ1|1⟩)A2

−→



Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (σxσz)A2 and (σz)B1 to recover the original states.
That is the end of the protocol.

Sub-case III If Alice's measurement outcome is |Υ3⟩aA1, then the reduced state
becomes

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (σxσz)A2

 and (σx)B1
 to recover the original states.

That is the end of the protocol.

Sub-case IV If Alice's measurement outcome is |Υ4⟩aA1
, then the reduced state

becomes

Finally, after receiving all the measurement results, Alice and Bob perform
appropriate unitary operations (σxσz)A2 and (σzσx)B1 to recover the original
states. That concludes the protocol.

(ι1φ2|10⟩ + ι1φ1|11⟩ + ι2φ2|00⟩ − ι2φ1|01⟩)B1A2

CZ (ι1φ2|10⟩ − ι1φ1|11⟩ + ι2φ2|00⟩ − ι2φ1|01⟩)B1A2

= (ι1|1⟩ + ι2|0⟩)B1
⊗ (φ2|0⟩ − φ1|1⟩)A2

−→

(ι1φ2|10⟩ + ι1φ1|11⟩ − ι2φ2|00⟩ + ι2φ1|01⟩)B1A2

CZ (ι1φ2|10⟩ − ι1φ1|11⟩ − ι2φ2|00⟩ + ι2φ1|01⟩)B1A2

= (ι1|1⟩ − ι2|0⟩)B1 ⊗ (φ2|0⟩ − φ1|1⟩)A2

−→
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